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ABSTRACT

Pamlico Sound is a large semi-enclosed body of partially saline
water on the coast of North Carclina separated by a narrow strip of barrier
islands from the Atlantic Ocean. Freshwater inflow is from two major rivers
and from Albemarle Sound., There is tidal flow across the inlets. Wind is a
major factor in circulation, and there is considerable surge acticn during

the hurricanes.

A numerical model based on the two-dimensional shallow water hydrodynamic
equations is used to compute water surface elevations and currents. The model
uses an explicit finite difference representation, and includes convective

acceleration, and nonlinear surface and bottom stress. The time dependent

water movements are computed for an observed hurricane with good success. The i
model can be used to predict surge heights for coastal protection, and it will
provide data for water resource management and for pollution control. A user's
manual consisting of the listing of the computer program and instructions is

given in the appendix te the report.
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NOMENCLATURE

The following symbols are used in this report:

c = wave propagation velocity in shallow water
Cd = coefficient of drag for wind stress
d = water depth at the initially undisturbed level, usually at mean
sea level.
£ = Coriolis coefficient
g = acceleration due to gravity
Hl = water surface in the basin
H2 = water surface in the sea
i = an index identifying the x-position
i = an index identifying the y-position of a point on the grid
k = an index identifying the time step
K = poefficient of discharge
m = an exponent
MLW = mean low water
n = Manning's coefficient of friction
Q = yolume rate of flow
R = hydraullc radius
Sf = friction slope
Sfx = friction slope in the x-direction
Sfy = friction slope in the y-direction |
t = time g
u = average velocity in the x-direction
v = average velocity in the y~direction
v = absolute velocity
Vw = wind speed
wx’wy = wind stress term in the equation of motion in the x-and y-directions.

X = horizontal coordinate axis ({(abscissa)




horiéontal coordinate axls (ordinate)

a variable |

angie between the current direction and the x-axis.
time step

distance step

angle between the wind direction and the x-axis,
tidal time

density of water

density of air

bottom shear stress in the x-direction

bottom shear stress 1in the y direction

wind stress

surface shear stress in the x-direction

surface shear stress in the y-direction
geographical latitude

angular speed of earth's rotation



1. INTRODUCTION

This report is concerned with the development of a numerical model for
computing the flow dynamics in the Pamlico Sound, N. C. The model predicts
the changes in the water velocity and water surface elevation under the action
of freshwater inflows, tidal exchange and the winds.

Pamlico Sound is a large shallow body of partially saline water on the
North Carolina c¢oast separating the mainland from the offshore sandy beaches
known as the Outer Banks. Freshwater flows into the Sound from the mainland
rivers while the inlets cut in the Quter Banks provide for the exchange of
seawater between the Sound and the Atlantic Ocean. The astronomical tide
1s significantly dampened as the tide moves through the inlets. However,
strong wind tides can develop in the Sound.

The numerical model determines the magnitude and direction of currents

in the Sound, the changes in the flow across the inlets and the fluctuation

in water levels at all locations in the Seund. The information would be
useful in water resource management. In particular, determination of surge
heights under hurricane conditions is of critical impertance in protection
of life and preoperty and in the planning of protective measures,.

The numerical model is based on the two-dimensional long-wave equations

of hydrodynamics., The equations are used to determine circulation, tidal

flows and wind tides. However, they do not generally apply to short-crested
waves. Therefore, short-crested waves are excluded from this study. For

the purpose of this report, the fluid is assumed to be homogeneous and density
stratification, if any, is neglected. The use of long-wave equation implies

the existence of a hydrostatic pressure distribution and shallow water. Limited
available data indicates that the assumptions involved in the theory are valid

for the Sound. The average depth is only 16 feet and the measurements of salinity

have indicated almost uniform vertical distribution representing well-mixed waters.



Measurements of velocities, even in the deeper parts of the inlets, show that
water flows in the same direction at different depths, there being negligible
vertical circulations.

A significant aspect of the study reported here is that it treats a spatial
two-dimensional flow in a basin with very irregular bottom topography and very
irregular shape. The Sound contains shoals as well as deeper areas. The boundaries
do not follow a regular contour and contain cuts of varlous sizes at the inlet.

The numerical model has been made possible by the advent of the digital
computer., It 1s feasible to handle irregular configuration and bottom topo-
graphy, and also the nonlinear effects of advection, bottom stress and wind
stress. Although much work has been done on modeling of one-dimensional flows
in rivers and estuaries, however, two-dimensional modeling is not used widely.
The two-dimensional problems generally involve unique boundary conditions. The
basic principles apply in general, but each case requires considerable effort
limited to the particular applicationm.

The ojective of this study is to compute the dynamics of flow in Pamlico
Sound focusing on currents and water levels fluctuation due to a) river flows,

b) tidal exchange across inlets, c¢) winds,and d) hurricanes.

IT. BASIC EQUATTONS

The basic hydrodynamic equations consist of the equations for the con-
servation of mass and momentum. Undexr the restriction of hydrostatic pressure
distribution or shallow water, the equations are known as the shallow water
equations, the tidal equations and the long-wave equations. The shallow water
assumption implies that the water depth is much smaller than the wave-length.
The derivation of the shallow water equations is given in well-known reference
works (Lamb 1932, Stoker 1957, Ippen 1966, Phillips 1969, and Dronkers 1964).

The equations have been rederived in a report by Leendertse (1967) and in a



thesis by Chu (1970). TFor the sake of brevity, their derivation will be omitted

from this report. The shallow water equations in two-dimensional flow are,

Su 8u . du_  dh N S -
at +tu gx tv 3y teg ox ~fv = p(h+d) ( SX Tb ) =20 (2.1)
Qv v v, _ 8h S . _
at tu ax tv 3y te 5;-+ fu = p{h+d) (Tsy Tby) =0 (2.2)
9 3 oh _
5% uthd)} + oo {v(bd)} + 70 =0 (2.3)

In these equations, u = the average velocity in the x direction, v = average
velocity in the y direction, h = the depth above the initially undisturbed water
surface (usually taken at mean sea level), d = the initilally undisturbed water
depth above the bottom, f = coriolils coefficient, Tsx = surface shear stress
in the x direction, Tsy = surface shear stress in the y direction, Tby = bottom
shear stress in the y direction, p = density of fluid (water), x = abscissa,

y = ordinate and t = time. Equation (2.1} expresses the conservation of momen-
tum in the x direction, equation (2.2) expresses the conservation of momentum

in the y direction and equation (2.3) expresses the conservation of mass.
Equation (2.3) is commonly known as the equation of continuity. The equations
are also known as the long-wave equations, as the tidal equations and as the
vertically integrated hydrodynamic equations. In one-~dimensional form, the
equations are known as the unsteady flow equations in open channels or as the
St. Venant egquations. The shallow water equations can be derived from the
generalized Euler-Navier-Stokes equations under the assumption of long waves by
integrating each term over the depth and dividing the result by the depth. Thus

the average velocity implies a velocity averaged over the depth. The expressions

- T



for the bottom shear stress are also related to the average veloclty.

The value of f, the Coriolis coefficient, is 2 w sin {, where wis the
angular speed of earth's rotation and ¥ is the geographical latitude., The
Coriolis force becomes important when the flow occurs in a relatively large
body of water. In this study, only the horizontal components of the Coriolis
force are considered important because the vertical component is negligible
compared to the gravitational force.

The relationship between the shear stress and the average velocity is
nonlinear when the flow is turbulemt. The values of Tbx and Tby can be related

to the energy gradient (friction slope) where the latter is given by some

semi-empirical formula dependent on the boundary roughness. Thus,

Tog = pg(htd) Sey (2.4)
Tby = pg(h+d) Sfy (2.5)
where Sfx = Sf cos B, Sfy = Sf sin B, Sf = friction slope, B = angle between

the flow direction and the x-axis. In engineering applications, Chezy and

Manning's formulas are commonly used. Then, using Manning's formula

2

_n vivl
£~ 22 R (2.8)

where n = Manning's friction coefficient, V = resultant velecity and R = hydraulic
radius. In two-dimensional flows, the velccity components u and v are related

to the resultant velocity by

V cos B (2.7}

ot
1]

V sin B (2.8)

<
]



and R = water depth (h+d). An approximate value for n for sand bottom is
n = 0.020,

The surface stress due to the wind is usually given by the formulas

_ m
T, - Ccl P, (v, (2.9)
where T, = wind stress, pa = density of air, V., = surface wind velocity,

m = an exponent and C, = a dimensionless parameter.

d
It is to be noted that bottom stress and surface stress are basically

the same type of physical process and both are expressed by similar formulas.

The magnitude of the stress 1s related to some power of the fluild velocity

at the interface, in one case between two different fluids (air and water) and

in the other case between the fluid (water) and a solid (bottom boundary).
Wilson (1960) conducted an extensive review of literature to find suitable

values for the wind stress over water. The tabulated values of Cd for light

and strong winds (velocity measured at 10 meter height) are abstracted in

Table 1. 1If the average value of Cd for strong winds is taken equal to

2.4 x 10~3, and P, the air density is approximately 2.42 x 1073 slugs/ft.B,

then the value of the wind stress Ts becomes

T =5.8x10 0y 2 Slugs (2.10)
8 w £

The shear stress acquires the dimension of lb/ft2 when the wind velocity Vw

is given in ft/sec. The wind stress in the equation of motion becomes

-6
8 _ 3.0 x 10 2
o(@a+hy - plathy  Vw (2.11)

T

with the dimension of acceleration. It will be expressed in ft/sec. when Vw

is given in ft/sec, d and h are in feet,and p the water density is given

in slugs/ft.s.
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IIT. REVIEW OF LITERATURE

Iwo-~dimensional long-wave propagation has received considerable attention
from numerical modelers because the system of equations describes a physical
situation of great practical interest in the management of coastal waters.
Hansen (1956) was the first to perform the computation of long waves 1in the
sea by using a computer. He used the explicit finite difference scheme, with
a forward difference in time and a central difference in space., Harris et al
(1964) indicated the difficulties encountered in the treatment of two-dimensional
long wave problems by the explicit method. Jelesnianski (1966) applied a
linearized form of the two-dimensional equations to compute the storm surge on
the open coast. Reid and Bodine (1968) modeled the hydrodynamic behavior of
Galveston Bay, Texas, for storm surge conditions. The vertically integrated
forms of the equations of motion and continuity were solved by the explicit
finite difference method. The effect of rainfall, wind stress and quadratic
bottom friction were taken into consideration but the terms dealing with
convective acceleration and the coriolis force were ignored. Heaps (1969) has
formulated an explicit finite difference sea model involving forward and
backward differences in time, and central differences in space, Comparisons
have been made between the computed and observed surge profiles at a number
of ports distributed around the shores of the North Sea. Some of the dis-
crepancies between the computed and observed values appear to have been due to
incomplete representations in the models of the actual conditions in coastal
waters along with the neglect of nonlinear effects.

Leendertse (1967) developed the semi-implicit scheme using implicit
alternating-direction method. The accuracy of the computation scheme has been
extensively tested on tidal-flow models of the estuary of the Rhine River and

of the North Sea by comparing measured data with the computed results.




Sobey (1970) compared several difference schemes for two-dimensional long
wave propagation by means of the propagation factor described by Leendertse
(1967). He demonstrated the usefullness of the propagation factor as a measure
of the stability of the finite difference schemes. Chu (197Q) used the
Lax-Wendroff method for the numerical solution of two-dimensional equations.
Recently Hess and White (1974) developed the numerical model of Narragansett
Bay using the basic approach of Leendertse (1967), but with several modifications.
Airan (1975) applied the explicit two-dimensional model to idealized basins and
to Pamlico Sound for determination of circulation, hurricane surge and water
quality. Considerable material in this report is shared with the thesis by

Airan.

IV. NUMERICAL MODELING

Overview of Available Numerical Techniques

The techniques for solving partial differential equations can be classified
as analytical and numerical. Analytical solutions of the hyperbolic partial
differential equations are practically impossible especially if the shape of
the waterbody is not regular. The following observations are based mostly on
experience with one-dimensional flows but are basically applicable to two-
dimensional cases as well.

The numerical techniques can be subdivided into finite element and
finite differences. The finite element technique has been successfully applied
to problems in structures and other engineering disciplines. However, its use
in river and estuarine modeling is new and will not be discussed here.

The finite difference techniques are based on the general assumption that
partial derivatives can be approximated by using the values of functions at
points which are separated by finite increments of distance or time. Thus, the
differential equations are transformed to algebraic equations by replacing each

derivative with corresponding finite difference term. These equations are solved



subject to the considerations for stability, convergence, accuracy, and efficiency

of numerical procedures. |

Before the availability of high-speed computers, the equations were mostly
golved by approximate methods based upon simplified assumptions. However, it

is now possible to attempt numerical solution of the complete (unsimplified)

equations. The complete methods can be of characteristic or direc; type.

In the characteristic approach, the equations are first transformed into
the so-called characteristic form and then soclved by implicit or explicit finite
difference representation. In both cases, either a characteristic network or
a fixed mesh of points 1s used on the time-distance plane to identify the

points at which solutions are obtained. The direct metheds are those in which

the finite difference representation 1z based directly on the primary equations,

They include implicit, explicit, and Lax-Wendroff methods all of which uzse

the fixed rectangular grid.

Each method presented above could have many variations depending on what
type of mesh is selected and what procedure is used for the solution of finite
difference equations. However, the following finite difference methods have
been found most useful in the analysis of hydrodynemic problems:

1) The characteristic implicit method using characteristic network

2) Direct implicit method using fixed mesh

3) Direct explicit method using fixed mesh, and

4) Direct Lax-Wendroff method using fixed mesh
These four methods are generally known as method of characteristics, implicit
method, explicit method, and Lax-Wendroff method respectively (Amein and Fang,
1969; Chu, 1970).

The method of characteristics involves numerical integration along selected
curves on the time-distance plane (Amein, 1966b; Fletcher and Hamilton, 1967;

Ellis, 1970). The main disadvantage of this method is that considerable inter-

polation becomes necessary when presenting the results. It is very awkward for
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natural water-basins of irregular shape (Amein, 1967).

In the implicit method, an unknown in a given time step depends upon the
variables in the previous time step as well as on the other unknowns in the given
time-step (Amein, 1968; Amein and Fang, 1969 and 1970). In this method, it
becomes necessary to solve by iteration a great number of simultaneous non-linear
algebraic equations. Wylie (1970) compared the different numerical methods and
concluded that in the implicit method an incorrect result is possible if the
reach lengths and corresponding time increments are increased to extreme values.

It has been observed that under certain conditions, thé implicit difference
equations exhibit oscillations (Liggett and Woolhiser, 1967; Baltzer and Lai, 19723

Fread, 1973).

In the Lax-Wendroff method, the computatlons are tedious, the programming
is complex, and changes in the program are difficult to make. However, the
technique offers the benefits of stability, relatively longer time steps and
accuracy (Amein, 1971). The method was used to analyze circulation patterns
in Pamlico Sound by Chu (1970}.

In the explicit method, the numérical procedure for the solution of
equations is essentially based on finding the values at a future time step by
extrapolating from the previous time step, subject to the laws of mechanics as
well as the initial and boundary conditions. In this study, the direct explicit
method is used because it is simple to formulate, provides greater flexibility
in making changes or improvements in the programs, facilitates the introduction
of input data or physical parameters, and the step-size is relatively independent

of the size of the system (Amein, 1971; WRE, 1966).

The Explicit Method

This method is based on the basic differential equations without going
through some intermediate transformations. The method is called explicit because

the unknowns can be computed explicitly from the algebraic finite difference
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equations,

Stoker, Isaacson, and their colleagues (1953, 1954, 1956, 1957) have done
pioneering work in applying the explicit method to flood routing in Ohio and
Mississippi rivers. Schaake (1965), Amein (1966a), Liggett and Woolhiser (1967),
and Garrison et al. (1969) have also applied different forms of the explicit method
to other types of flow problems. The grid size and time steps in the explicit
method are governed by considerations for the stability of its numerical scheme
for computations. The surge computations of Reid and Bodine (1968) and of
Jelesnianski (1966} are based on the explicit method.

Flgure 1 shows a rectangular network for the explicit method. The x and
y coordinates are represented by i and j whereas the time step is given by k.

The finite difference approximations which are used to represent the partial

derivatives can be derived by truncating a Taylor series expansion of a function at

a point (Hildebrand, 1968; Ames, 1969; Mitchell, 1969; Stark, 1970):

2 .2 3 .3
3 A !
a(xHix,y) = alx,y) +Axg(x,y) + £%%l-' g;%(x’y) + g%?’ gxg(x'7)+ -- G5

where 0. represents the variable of interest. Dividing by Ax and rearranging

20 _ aletAx,y) - a(x,y)
8x(x’y) - hx

+ 0 (Ax) (4.2)

where 0(Ax) represents the order of magnitude of the truncation error. 1In the

subscripted notation, equation (4.2) could be written as:

aa® ok - ok : !
1, _ “i+l, ] i,4 ;
3x Ax + 0 (&x) (4.3)

where i, j, and k represent x, y, and t axes as given before. Equation (4.3) is
generally described as the "forward difference" form of the finite difference
representation. Similarly, other forms of such relationships can be derived or,

more simply, written by visualizing the relationship between slopes and values of
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a function at separated points., TFor example,

Ba? 1 ai ' a?_l 5
] - H 3 .
™ = + 0(Ax) (4.4)
k k k
o4 o -
i,j _ TiHl,d i-1, 1] 2 (4.5)
ox 2Ax +0 [(Ax)7]

Similar expressions can be written for partial derivations with respect to y.
Equation (4.4) shows the "backward difference" and equation (4.5) shows the
"central difference" forms of the given partial derivatives. By using more
neighboring points, an unlimited number of other finite difference approximations
can be obtained. However, the three forms as given above are compact and have
been found te be the most useful in finite difference modeling of river and
estuarine systems.

In this study, the central difference form is used to get the finite
difference expressions for all partial derivatives with respect to x and y.
Similarly, the partial derivatives with respect to t are approximated by using

the forward difference scheme as given below:

aak , ak+l - a#
i,] = 1,3 i, (4.6)
at At '
where
—% 1 .k K k K
5,0 T F O e Y 9y g Y e g Y % o1 .7

it should be noted that in equation (4.6) at 3
¥

used instead of what would generally be expected, a? 3 This is essential in g

as defined by equation (4.7) is

order to satisfy the stability considerations.
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When all the partial derivative terms in the basic equations (2.1, 2.2,

and 2.3) are replaced by their corresponding finite difference forms as given

in equations (4.3) through (4.7), the following algebraic equations are obtained:

k4l _ -ar Tk k ok k
P, T T2Ax [ui+1,j (yprg ¥ 91,3 " 81,5 Py Y di-l,j)]

At k k _ k k
“7 Ay ["i,jﬂ (hy o1 * 94,5407 " Vi,5-1 PyL5-1 94,510

e
k+l _ _k k ok At l:uk ok At
O Yi5 ]:ui+1,j ui—l,j:] 2Ax vli(,j 1,341 ~ Yi,5-1 ] 28y
_ Kk _ K _At K Ar - gos..T LAt
2 l:hi+l,j hi—l,j:| 2hx T f"’i,j A
wk.ﬁt
+ + U,
B .+ 4, 13
i,] 1,]
k1 k [vk _ Ak Tk _ K At
Vi3 i,5 LVi+1,] i-1,7 | 28x ~ Vi,j | V1,541 T Vi,j-1] 24y
k k At k -k
-g [%i,j+l hi,j—l Ay f.ui’j.At - g.sf.vi’j.&t
. w At Tk
——y—-——k + v, 5
hY . +d, :
1,3 i3
where

(4.8)

(4.9)

(4.10)

(4.11)
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T Cdp ' '
w = —X . aw cosd (4.12)
x P
and
L T CdpaV 2
y ~ L =5 sind (4.13)

where § is the angle between the wind direction and the x-axis.

If values of all the variables are known at all locations at a given time,
say k, then the three algebraic equations can be solved explicitly at time (k+l)
and point (i,j). The values for other grid points at (k+l) are also obtained
in the same way. The computations can then be extended to succeeding time

steps (k+2),(k+3), until all the desired values become known,

Initial and Boundary Conditions

The sclution of finite difference equations, as described above, requires
that the initial and boundary conditions be satisfied. The initial conditions
would be glven by the known values of water velocity, direction and depth
at all locations in the waterbody at a given time.

The boundary conditions would be prescribed by the values of water dischargeh
with respect to time at all inflow and outflow locations. If necessary, the
discharge can be replaced by water surface elevations at the points where rivers
make a junction with the waterbody and at tidal inlets. At all other boundary
points, 1t is assumed that there is no flow across the boundary, i.e., at the
points on solid boundary, u=0 and v=0. In the case of wind-driven circulation
and resulting water quality, the wind speed and direction with respect to time
would also be required at all points.

It should be noted that in applying the model, specific numerical values
of some parameters are needed. These parameters are: the coriolis coefficient,
the bottom friction coefficient and wind stress coefficients in longitudinal

and lateral directions. Many of these coefficients are difficult to evaluate
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and are governed by the natural processes of complex nature specific to the
waterbody. If the relationships are not known precisely, empirical or semi-
empirical values based upon the available data and good judgement have to be
adopted. Sometimes, these values can be verified by conducting appropriate

field investigations.

Stability Considerations

A converging solution for the set of finite difference equations is possible

only when the rounding off errors in the numerical procedure are not amplified
in an unlimited manner. A complete stability criterion for the numerical solution
of nonlinear equations of free-surface flow is not available. Generally, the
equations are reduced to linearized forms and then the stability conditions are
established. The familiar criteriom of stability known as Courant condition
(Isaacson et al., 1958; Ligget and Woolhiser, 1967; and Strelkoff, 1970) 1is given
as:

At < o (4.14)

< g

in which ¢, the wave propagatlon velocity =, / g (d+h)

Richtmyer and Morton (1967) investigated the stability condition for linear
explicit finite difference schemes and found that the system is locally stable

provided:

de 1 1 (4.15)

Ax — 2
\/ g(d+h)max

If the equations include the effects of friction, lateral flow, or the

terms to describe the non-prismatic character of the channel, the limits for
stability are not clearly presented in the literature, even when the equations
are linearized (Wylie, 1970).

An approximate criterion for the stability of non-linear difference

equations can be obtained by Fouriler analysis of the error propagation properties
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of the corresponding linearized forms. This stability analysis, by O'Brien
et al. (1951), has been used by Abbott and Ionescu (1967), Leendertse (1967)
and others. For the hydrodynamic equations, this approach results in the

following limit on allowable time step in rectangular grid explicit formulation:

At 1 At
Lt = _ at 4.16
Ax hd c 1 f1 2 ( )
5 2 _4/3
in which fl = gn .V/2.22 R » the barred quantities representing average flow
conditions,

In this study, the basic Courant condition as given by equation (4.14) was
used as the stability criterion. While calculating the size of time step, the

minimum value of numerators and maximum value of denominators were used. This

approach leads to a conservative estimate of At, since the maximum and minimum

values of the relevant parameters would rarely occur at the same point.

Computations

The water body to be studied is simulated on a rectangular grid system
and a boundary is drawn through the grid points so as to fit a map of the natural
boundary closely. A suitable scale determining the grid size and grid density
is selected. The coordinates of a point in the water body are identified by the
subscripts (i,j), where 1 represents the abscissa, and J represents the ordinate.
Time is represented by the superscript k.

To begin with, the values of local depths at mean low water {MLW) are known
at some grid points. The depths at other points are determined by interpolation.
The minimum value of depth was assumed to be five (5) feet, which implies that
the boundary chosen in the model lies well inside the natural boundary. With
initial conditions being known, the circulation parameters are computed at each

future time step by the following schedule:

1. Compute u, v and h at the interior points marked by "squares" on alternate

rows with even numbered values of x. Use basic equations and get necessary
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data from prévious time step.
2. Compute u, v and h, at the interior points marked by "squares" on alternate
rows with odd numbered value of x. Use basic equations and get necessary

data from previous time step.

3. Compute u, v, and h, at interior points marked by "circles" on one grid
inside the boundary. Use basic equations and get necessary data from

previous time step.

4. Compute u, v, and h at the remaining Interior points marked by "circles"
on alternate rows with odd numbered values of x. TUse mid-side averages of

the values already computed in current time step.

5. Compute u, v and h at the remaining interior points marked by "circles"
on alternate rows with even numbered values of x. Use mid-side averaging

of the values already computed in current time step.
6. Compute h at all boundary points using the condition of geometric compati-
bility.

7. Compute uv and v at inflow junctions using the current values at the corres-
ponding nearest interior points and at outflow locations from the computed
values of discharges and depths in the current time step. The values of u

and v at all other boundary points are equal to zero.

Interior Grid Peoints

The interior grid points are marked by "squares" and "circles" alternately
in both directions as explained above. Knowing all the initial boundary conditions
at a time, t=k, the values of u, v, and h are computed at interior "square" points
by using the finite difference equations (4.8 to 4.10). Figure 2a gives the
computational module for an interior "'square' point, (i.j). It is noted that the

previous time step values at eight neighboring points are used in the computations.
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The values of parameters at interior "circle" points are found by mid-side
averaging of the current type step values already computed at the four neighboring

"square" points (Figure 2b).
V. HYDROGRAPHY OF PAMLICC SOUND

Hydrological Information

The Pamlico Sound, located in eastern North Carolina, is the largest of
the embayments formed behind a narrow strip of barrier beaches along the Atlantic
Coast of the United States. As compared to other embayments along the U. S.
Coast, it is relatively shallow and has an estimated total drainage area of
20,000 square miles (Roelofs and Bumpus, 1953).

The Pamlico Sound (Figure 3) is bordered by the mainland with its tributary
rivers on the western side, and by the Outer Banks on the eastern side. At its
northern end, it connects with the Albermarle Sound through the Croatan and
Roanoke Sounds. 1In the southern direction, it is continuous with thae Core Sound.
The main tidal inlets that connect Pamlico Sound to the Atlantic Ocean are Oregomn,
Hatteras, and Ocracoke Inlets.

Famlico Sound covers am area of approximately 1700 square miles. It is
nearly 70 miles long in the southwest-northeast direction and 10 to 30 miles wide
in the southeast-northwest direction, being narrowest at the northern end and
widest opposite Hatteras Island. The average depth in the sound is approxi-
mately 16 feet. A deeper water area is found on the west side of the main body
with a maximum depth of 22 feet. Shoaling regions are located near the entrances
for Neuse and Pamlico rivers and near the tidal inlets.

Two large river systems, the Neuse-Trent and the Tar-Pamlico, discharge
directly into the sound. Two other rivers, Chowan and Roancke, empty into the
Albemarle Sound which in turn discharges to Pamlico Sound through Croatan and

Roanoke Sounds. In addition to the four river systems, there are many short,
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wide streams wﬁich contribute to the water supply of Pamlico Sound complex by
draining the surrounding swampy areas. However, the quantitative nature of such
contributions has not been fully evaluated.

The average annual rainfall on the contributing basins exclusive of the
coastal region itself is in excess of 45 inches. Runoff, however, is only 307
of thils amount or about 14 inches per year. Maximum runoff takes place in the
spring months and minimum runoffs occur in June and again in October and November.
Fvaporation data are sparse but from preliminary studies it appears that during

the summer months, evaporation and rainfall are about equal (Smallwood and Amein,

1967).

Factors Affecting the Circulation

There are many natural factors which significantly influence the hydrodynamics
of Pamlico Sound. These include the evaporation and rainfall, surface wind stress,

freshwater inflows, tidal exchange, corlolis force due to rotation of the earth,

and bottom topography.
The influence of evaporation and rainfall can be neglected because they are f
evenly distributed over the sound. The corioclis force is significant only for
water bodies much larger than Pamlico Sound and therefore in this study, the
coriolis stress coefficient is assumed to be zero. The fricticnal forces due

to the irregular bottom topography have been calculated using a Manning ceoefficient

of 0.02.

The mouths of Oregon, Hatteras and Ccracoke Inlets are small as compared
to the width and size of the Sound, Therefore, there are no perceptible lunar
tides away from the inlets (Posner, 1959). The domlnating factor in determining
the flow pattern in the sound is the wind force. According to Roelofs and Bumpus
(1953), the currents in Pamlico Sound, which are relatively weak, depend mainly
upon the direction and velocity of the wind and, not upon tidal oscillatiens.

Hurricane driven tides may be in excess of five feet in some parts of the sound
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(Smallwood and Amein, 1967). Minimum wind influence occurs in the months
of June and July.

The effect of mean annual freshwater inflow to the sound is also small.
Therefore, except during the flooding season, the runoff current would easily
be overpowered by the currents due to the wind friction.

Freshwater is discharged to the sound from the Neuse and Pamlico rivers and
from Roanoke and Croatan Sounds. Gage records at Tarboro and Kinston can be
used to estimate the flow from the Pamlico River and the Neuse River. A statis-
tical analysis of the flood flow for these two rivers is given in Figure 4 (Chu, 1970).
It is estimated that 52% of the flow from the Neuse River and 49% of that for the
Pamlico River is contributed by ungaged parts of their drainage basins. Therefore,
in determining the total flow from these two basins into the sound, it is assumed
that the discharge from ungaged areas 1s proportional to that for the gaged areas.

The average inflow from Roanoke and Creatan Scunds is assumed to be equal
to the discharge from the Chowan River, the Roanoke River, and 4000 square miles
of marshes into the Albemarle Sound. The average annual flow from the Chowan
and Roanoke rivers 1is estimated to be 1.10 cfs per square mile (USGS, 1963;
Hammack, 1969). The discharge from marsh areas is estimated by Hammack (1969)
to be 1.00 cis per square mile. The distribution of Albemarle Sound discharge
between the Roanocke and Croatan sounds is assumed to be directly proportional to
their cross sectional areas. Based upon this assumption, Jarrett (1966) estimated
that 85% of the flow passes through Croatan Sound and only 15% 1s carried by the
Roanoke Scound.

Tables 2 and 3 give the mean annual values and percentages of all freshwater
inflows to the Pamlico Sound and Table 4 shows the estimated values of 5, 10,

and 20-year flood flows as given by Chu (1970).
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TABLE 2. MEAN ANNUAL DISCHARGE FROM THE DRAINAGE
BASINS CONTRIBUTING TO PAMLICO SOUND

Gaged Ungaged Estimated Total
Area Discharge Area discharge discharge
Basin (mi?) (cfs) @i?) (cfs) (cfs)
Neuse River 3601 3938 2039 1242 5180
Pamlico River 2233 2420 1967 2150 4570
Roanoke River 8410 8155 1220 1185 9340
Chowan River 255 315 4555 5020 5335
Marshes 0 0 4000 4000 4000

TABLE 3. MEAN ANNUAI, DISCHARGE AND THE PERCENTAGE OF
DISCBARGE FROM THE ENTRIES TO PAMLICC SOUND

Entry Mean annual discharge Percentage of discharge
(cefs) (%)
Neuse River 6180 21
Pamlico River 4570 15.5
Croatan Sound 15,830 53.7
Roanoke Socund 2845 9.8

Total Amount 29,425 100
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TABLE 4. ESTIMATED 5, 10, AND 20 YEARS FLOOD FLOW
FROM THE ENTRIES TO PAMLICO SOUND

Entry 5 years flood 10 years flood 20 years flood
(cfs) (cfs) {cfs)
Neuse River 36,000 46,000 70,000
Pamlico River 42,000 54,000 80,000
Croatan Sound 92,000 117,400 178,800

Roanoke Sound 16,800 21,400 32,600
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VI, APPLICATION OF NUMERICAL MODELING TO PAMLICO SOUND

The limited field data on Pamlico Sound indicate that there is little
vertical circulation in Pamlico Sound and the shallow water conditions prevail
(Roelofs and Bumpus, 1953; Amein, 1971). The vertical salinity gradients are
uncommon in the sound and it can be assumed to be well mixed in the vertical
direction (Roelofs and Bumpus, 1953; Posner, 1959; Woods, 1967; and Amein, 1971).
Therefore, in this study, the shallow water equations derived in Section 3 were
used for analyzing the circulation in the sound. The Pamlico Sound was repre-
sented by the zig-zag boundary om a two dimensional 61x35 grid as shown in
Figure 5. Each cell represents a distance of 7422 ft, in either direction.

The grid points have been marked by "squares™ and "circles'" alternately in

both directions as explained previously. There are three openings representing
the mouths of the Neuse River, the Pamlico River and the Croatan and Roanocke
Sounds. Three more openings simulate the locations of Oregon, Hatteras and
Ocracoke Inlets.

The local water depths, d, have been noted from the hydrographical maps
of U. S. Coast and Geodetic Survey and other sources. A minimum value of 2 feet
depth has been assumed implying that the boundary is drawn slightly inside of
the actual shoreline. It has been assumed that at time t = (, the sound is still
at the mean low water level (MLW), that is, at all interior points, the velocity
in longitudinal direction - u, the velocity in lateral direction - v, and the wvaria-
tion of depth with respect to MLW - h are all equal to zero. Unless specified
otherwise, it is assumed that the sound receives a constant freshwater inflow
equal to the estimated 20-year flood flows as given in Table 4, that is:

Neuse River, Ql 70,000 cfs
Pamlico River, Q2 80,000 cfs

Croatan and Roanoke Sounds, Q3 211,400 cfs
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When the tidal inlets are assumed to be open, their flow is calculated from

the difference in water elevations in the sound and those in the sea.

Numerical Simulation

The Pamlico Sound is represented on a two-dimensional 61x35 grid as shown
in Figure 5. The origin for the grid system is taken at the intersection of
35°N latitude with 76°W longitude. Each cell represents a square 7422 ft. x 7422 fc.
The x-axis makes an angle of 45° clockwise with the 76°W longitude. Each point
on the grid is identified by the double subscript (i,j) where i measures the
number of Ax steps from the origin along the x-axis and j represents the number
of Ay steps along the y-axis. Each point is further designated as a square if
the sum of i and j at that point is even, and each point is.designated as a clrcle
if the sum of i and j at that point is odd.

The grid points identifying the boundaries are numbered consecutively
clockwise from 1 to 192 starting at (5,24). Thus the Neuse River confluence
with the Sound is identified as grid points (5,23), (5,24), (5,26), and (5,27,
and also as bouadary points Nos. 192, 1, 2, 3 and 4,

The procedure for numerical modeling consists of applying the equations
of motion in finite difference form between the lowest and highest values of
i on a given row. The computaticns are started at the bottom row (lowest j
value) and the solutions are marched row by row until the highest value of j
is reached. Assuming that the values of all variables are known at time t ,
then a complete sweep of the grid system inside the boundary points furnishes
the values of the variables at time step tk+l = tk + At. To avoid possible
instability conditions, a staggered computational scheme is used in that the
variables are computed at staggered points on the network by finite difference
equations based on the hydrodynamic equation and the values at the remaining
points are calculated by averaging the values from the adjacent neighborhood.

The two sets of points are recognized by the sum of i and j. Thus the value of
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of u, v, and h may be computed by the finite differences at points marked

by squares, and the values at points marked by circles may be determined by
averaging. For example, the values of u, v and h are computed by the use of
equations 4.9, 4.10 and 4.11 at poimts (15,21), (17,21), (16,22), (15,23) and

(17,23) and the value of u, v and h at (16,21) is calculated as:

u (16,21) = + fu(l?,Zl) + u(15,21) + u(16,22) + u(lG,ZO)}
v (16,21) =% {v(l?,Zl) + v(15,21) + v(16,22) + v(l6,20)}
h (16,21) =% {h(l?,Zl) + B(15,21) + h(16,22) + h(l6,20)}

For the sake of consistency, the values at points marked by squares are
computed by equations 4.9, 4.10 and 4.11, and the values at points marked by
circles are computed by averaging the values at adjacent points. It 1s alsco
expedient to compute the values at all points one grid inside the boundary by
the use of equations 4.9 through 4.11 regardless of whether the sum (i+)) is

odd or even.

Boundary Conditions

A major problem in the computation of flow in two dimensions is the speci-
fication of boundary conditions., If the values of the discharge or water surface
elevations are known, then these values could be prescribed as the boundary
conditions., However, with the possible exception of using the sea~level as the
boundary, the water surface elevation or the discharge at the boundaries of a
water basin may not be known. Furthermore, the determination of these values
at the entrances to the basins may be the primary purpose of the modeling effort.

The boundary conditions used in this model at the confluence of the rivers
with the Sound are given as "geometric compatibility"” conditions. The "geometric
compatibility" condition assumes a linear variation of water surface elevation

and water velocity with distance extending outward from the Sound into the rivers.
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This condition permits the reversal of flow from the Sound into the rivers
under the action of strong winds. However, from the hydrodynamic point of view,
it is a weak condition and is not as satisfactory as the use of values of stage
or discharge.

The "geometric compatibility™ condition is also used for the computation
of water depth at the land boundaries. The water surface is assumed to have
the same slope at the land boundary as at points one grid inside the boundary.
The velocity, however, is taken to be zero at the land boundary.

The boundary points are classified into eight (8) types depending upon
the location of the point. Each type requires a special boundary equation.

For example, the equation for determining the stage at {50,10) 1is different
from that at (30,22). The boundary points under each type of classification
and the boundary equations pertaining to a given type are given in the computer

programs and are printed in Section 11.

Tidal Exchange Computations

The flow through a tidal inlet 1s derived from the hydraulic gradient
between water surfaces in the basin and the sea. The discharge 1is influenced
by many factors including the turbulent frictional resistance of the connecting
passage, channel and basin geometry, and the relative values of water elevations
in the basin and the sea. A number of methods have been developed for the flow
computations in a tidal inlet (Brown, 1928; Baines, 1957; Dronkers and Schonfeld,
1955; Baines and Knapp, 1965). However, these methods are applicable to relatively
small basins of regular shape. Keulegan and Hall (1950) and Keulegan (1967) formu-
lated the rheological system of a relatively long inlet connecting a basin with

uniformly changing water surface to a sea:

—= = K - H When H, > H (6.1)

dHl wh
- = -k ,Hl - H2 en Hl > H, (6.2)

ar
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where Hl is the water stage in the basin with respect to mean sea level, H, is
the water stage in the sea with respect to mean sea level, & is the specific tidal
time and K is a coefficient of discharge.

Keulegan's method is applicable for systems in which the propagation of
the tidal wave may be neglected (Broome, 1968). Therefore, it was applied to
find the flow through Oregon, Hatteras, and Ocracoke inlets between Pamlico Sound
and Atlantic Ocean. Equations (6.1) and (6.2) were rewritten for Pamlico Sound

ass:

Q= K-/H, - H when H, > H (6.3)

ar

Q= -K./H - H when H >H (6.4)

In applying this formula to the tidal inlets at Pamlico Sound, it was
assumed that the sea water surface remains at mean sea level. H1 was found
by averaging the values of water stage at the inlets. The coefficients of
discharge for Oregomn, Hatteras and Ocracoke inlets were taken as 98800, 108500,

and 165400 respectively as calculated in Table 5. The sign convention followed

for Q was that it was positive for inflow and negative for ocutflow.

TABLE 5. VALUES OF DISCHARGE COEFFICIENTS FOR TIDAL INLETS

Observed
transport Mean half Estimated
Inlet during flocod Mean tidal  tidal range proportionate
conditions* range#® (Ah) discharge(Q) K=Q/ Ah
m3 ft. ft. cfs
Oregon 56 x lO6 1.8 0.9 93,500 98800
Hatteras 65 x 106 2.0 1.0 108,500 108500
Ocracoke 96 x 10° 1.9 0.95 159,400 165400
ToTaLs 217 x 10° 361,400

#S0URCE: Roelofs and Bumpus (1953)
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Selection of Time-Step

The size of the computational time-step, At, is governed by stability
considerations and desired accuracy of the results. If At is reduced below
a certain value, the benefits of accuracy may be far less than additional
expenses in terms of computing time. On the other hand, if At is Increased
beyond a certain value, the savings in computing time may be at the expense
of stability of the numerical scheme thereby introducing significant errors
into the results.

The condition of stability used in this study is the famous Courtant

condition as given earlier, that 1s:
Ax
<
ﬁt—vvgh‘

In the present model for Pamlico Sound, 8x = 7422 ft., maximum assumed

(6.5)

value of V = 5 ft/sec., maximum value of h+d = 22 ft., and g is the gravitational
constant. Using these values in equation (6.5) shows that A t should be less
than or equal to 4 minutes. It should be noted that the parameters in the
denominator are estimated at their maximum values. Under actual conditions, it
is improbable that the values of velocity and depth will be maximum at the same

time at a point. Therefore, values of At as high as 5 minutes can be used.

Calibration of the Mathematical Model

Tt needs to be emphasized that mathematical models, such as the one presented
in this report, must be calibrated before they can be used with confidence. The
procedure calls for a sensitivity analysis of the model on a known set of field
data. The different factors in the model are thus adjusted so that the computed
values of the parametérs under consideration would closely match the values
actually observed in the field. After such fine tuning of the model, it would
be called "reliable', that is, the results predicted by it would be accurate

and reproducible.
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VITI. CIRCULATION DUE TO FRESHWATER INFLOW AND WIND

The general computer program prepared for Pamlico Sound can be used to
determine the circulation patterns due to freshwater inflow, tidal exchange
and the wind. This section is concerned with the presentation of computatilonal

results using freshwater inflow and wind.

Circulation Due to Freshwater Inflow

The finite difference equations representing the hydrodynamic equations
subject to the boundary conditions are solved at appropriate grid points in
the Sound. The values of freshwater inflows for 20 year floods as given 1in
Table 4 were used. It was assumed that there is no flow through the inlets,
therefore the coefficients of discharge were assigned zero values. Figures
6 and 7 give the velocity vectors and contours for water levels at Time 360
and 1440 minutes respectively. The time-step used for calculations was 1
minute. The arrows represent the magnitude and direction of water velocity.
The water level contours show that the incoming water slowly gets distributed
in the interior space. It is noted that all values of h are positive because
there is no outflow and the water keeps piling up. However, because of the
large size of the sound, the absclute values of increments in depth are relatively

small.

Circulation Due to Uniform Wind

When a wind of constant speed is assumed to blow uniformly over the sound,
and no inflows or outflows are permitted, the circulation patterns reflect the
true effects of uniform wind stress. The input data, in this case, is prepared
such that the speed and direction of wind is the same at all points and remains
constant with respect to time. The inflow and outflow terms Ql, QZ’ Q3, Qé’ Q5
and Q6 are all set equal to zero. The wind stress coefficient Cd of 2,50 x 10_3
is used in all cases. The minimum value of total depth under the influence of

wind force 1s assumed to be 2.0 ft. to avoid siungularity condition as explained

earlier.
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(a) Northerly Wind at 70 Miles Per Hour:

In this case, the direction of wind makes an angle of 225° with the
positive x-axis. Performing the computations for a time-step of 1 minute,
the resulting circulation patterns at 29 minutes are shown in Figure 8. It
is noted that the wind induced water velocities are much larger than those
given previously for freshwater inflows only. The water surface is depressed
below the MLW on windward side and is elevated on the leeward side. The water
surface profile at Time = 2880 minutes along the longitudinal section y = 20

is given in Figure 9.

(b) Southerly Wind at 70 Miles Per Hour:
Here the wind is blowing from the South, making an angle of 45° with the

positive x-direction.

(¢) Westerly Wind at 70 Miles Per Hour:
When the wind is from the west making an angle of 315° with the positive
x—axis, then for At = 4 minutes, the circulation pattern for 240 minutes is

shown in Figure 10. The water surface profile for this case is given in Figure Y.

Pamlico Sound Subjected to Variable Wind Stress

The wind force acting over Pamlico Sound is rarely uniform and constant
in nature. Generally, the wind stress would differ from point to point and
would vary with respect to time. The procedure for computing circulation patterns
would be fundamentally the same as for uniform winds with requirement that the

wind field should be prescribed with time.
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FIGURE 9. Water Surface Profiles Along Longitudinal Section at

y= 20 at Time =2880 Minutes for 70 MPH Winds from
Different Directions as indicated.
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Effect of Size of Time Step

In order to evaluate the effects of At on the stability of the results,
the computations were performed using the time-step values varying from 1 to
6 minutes. The results are summarized for each run at selected grid points
in Table 6. It is noted that the program becomes unstable beyond At = 5 minutes.
However, there is slow impairment in accuracy of the results as the value of
At is increased. There is, however, significant savings in computing time at
higher values of At as shown in Table 7. Therefore, the size of time-step
should be selected based upon the desired accuracy of results subject to the

stability considerations.

VITI. MODELING OF HURRICANE SURGE

Numerical modeling is an effective tool for predicting surges caused
by hurricanes. The irregular boundary, the non-uniform bottom toepography,
the changing wind pattern, the variable barometric pressure and other causes
can be included, and the dynamics of surge movement can be calculated. This
technique can be useful in the planning and operation of hazard warning systems
and also in land use management.

It would be highly desirable that the model should be verified so that
its accuracy and reliability be established. It is also important to know what
type of information must be provided to generate useful results. Unfortunately,
it is costly and hazardous to obtain precise data under hurricane conditions.
In this section, application of the numerical model for the purpose of predicting
the surge during hurricane Donna will be given., It should be emphasized that
the application is priﬁarily for purposes of illustration. Although limited
data on the hurricane wind and on shore surge heights are available, the data
lack precision and are at best rough estimates of actual conditions.

Hurricane Donna of September 1960 was the first storm with hurricane
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TABLE 7, EFFECT OF TIME-STEP ON COMPUTATION COST*

Time-Step CPU Time Used
Minutes Minutes: Seconds Core Time, K-sec. Minutes; Seconds

1 3:59.4 44563 4:57.1
2 2:25.0 30428 3:22.8 :
3 1:48.7 24975 2:46.5 i
4 1:31.6 22416 2:29.4

5 1:18.4 20434 2:16.2

6 Instability of results after 360 minutes of flow

*In each case, t_ = 1440 minutes and the results were printed after every 60 minutes.

f
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force winds in Florida, Middle Atlantic States, and New England in a 75-year
record (U.S. Department of Commerce, 1971). The track of hurricane Donna is
shown in Figure 11, After traversing the Flerida Peninsula, it continued in a
northeasterly direction in the Atlantic Ocean until its second landfall in the
Cape Fear area in North Carolina. The diameter of the eye of Donna was generally
about 60 miles, but varied from 50 to 75 miles. The forward movement of Donna
in the vicinity of Pamlico Sound is shown in Figure 12. The wind speed and direction
recorded by weather stations at Hatteras, Cherry Point, New Bern and Elizabeth
City are given in Table 8.
For the computation of wind effects, the Pamlico Sound was divided into six
zones as shown in Figure 13. The velocity and direction of wind for different
zones are found by interpolation. The resulting data are given in Table 9. Tt
is noted that the values used for Zone 2 in Table 9 are the actual observations
at Hatteras station.
The starting time t = 0 was set at 1500 hours on September 11, so that the
first set of observations at 1600 hours could be used as data for £t = 1 hour. In
this way, the data for a total of 17 hours {up to 0800 hours on September 12) were
used. After that, the last values in different zones were assumed to remain constant
with respect to time. The values of wind speed and direction at any intermediate
time were found by straight line interpolation between the two sets of hourly
values. These values are used in the expressions for W, and u&, the wind stress
parameters in x and y directions as given by equations (4.12) and (4.13) respectively.
The wind data for hurricane Donna given in Table 6 was used aleng with
freshwater inflow and tidal exchange. The report of U. S. Army Corps of Engineers
{(1961) showed that on the morning of 11 September 1960, the mean water level in
Pamlico Sound was about 1.0 foot above the mean sea level. The sound water ele-
vations were given according to a datumline at 4.0 ft. below mean sea level to

avoid any negative numbers.
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FIGURE 12 The Forward Movement Of Hurricane Donna In The

Vicinity Of Pamlico Sound, 11-12 Sept. 1960

Scale : 1" = 40 Miles
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During calculations, a minimum depth of 2.0 feet was assumed to avoid any
singularity condition. The initial and boundary conditions used provided for
adjustment in inflow and outflow according to the changing water elevations at
the junctions in the sound. Figures 14, 16, 18 and 20 show the sound water
elevations for hurricane Donna as calculated by the model and Figures 15, 17,

19 and 21 show the contours as sketched by the staff of the U. S. Army Corps
of Engineers (1961) from observed tide gage records.

After a close examination it can be noted that the contours for water
elevations from the computations are similar to the contours from "observed"
data. Some discrepancy between "observed" and computed data would be expected.
The observations reflect the conditions in the Sound prior to the start of
hurricane wind action. In the model, the imposition of instantaneous inflows,
winds and other factors provide a different set of initial conditions. Moreover,
the data are extrapolated from four distant points and represent only approxima-
tions of the actual wind speeds. Therefore, only the overall trend of the
observations need to be compared, especially because there were no actual measure-~
ments of water surface elevations inside the Sound and the contours were sketched
from tide gages, some of which were considerable distances away from the Sound.
The model shows great potential for the prediction of circulation and water

surface heights under given wind conditions.
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IX. SUMMARY AND DISCUSSION

This study presents the development and applications of a two-dimensional
model for circulation under unsteady flow conditions. The physical laws
governing the water movement are given by partial differential equations of
the hyperbolic type. The analytical solution for these equations is not
feasible without making simplifying assumptions. In this study, the complete
equations have been numerically solved by the explicit method using a fixed
network of points. Therefore, the results are expected to be more representative
of the actual processes.

The basic equations of motion and continuity are solved subject to the
initial and boundary conditions. The size of time-step for computations was
determined on the basis of stability considerations for the numerical scheme.

The computer program was developed with deliberate emphasis on simplicity so

that the model can be actually used by concerned agencies for real management
problems. A users' manual has been prepared and included in the appendix with
necessary instructions regarding the Input and output data. The model was used
to simulate the water movement in Pamlico Sound, North Carolina. The input data
used were based upon the available information for the sound. First, the factors
affecting the fluid tramsport in the sound were studied. It was found that
surface wind stress, freshwater inflow, and tidal exchange are the controlling
parameters, in that order of significance. Therefore, the investigations were
limited to the effects of changes in these factors on the circulation.

The Pamiico Sound was represented by a 61 x 35 grid with a zig-zag boundary.
In the first case, it was assumed that there is no outflow from the sound and no
wind forces are acting. Thus, only the freshwater inflows and their effects on
the sound, were studied. It was found that the circulation pattern develops very

slowly. As no outflow is allowed, the water level continues to rise, even though
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the absolute increase 1s not so high because of the vast size of the sound.

The sound was then subjected to uniform wind stresses. It was assumed that the
wind blows at a certain speed, and from a certain direction uniformly over the
sound and remains constant with respect to time. As expected, it was found that
the water surface 1s pushed below the original level on windward side and was
driven above its level on leeward side. Various wind speeds from different
directions were studied with the same general result. It was noted that at some
points near the boundary, there was a tendency for wave formation. It was found
that wind forces did have pronounced influence on the flow of water im the sound.
Finally, the model was used to compute hurricane surge. The available data for
hurricane Donna were used after necessary extrapolation., It was assumed that the
tidal inlets are open and the flow through them is dependent upon the difference
in water levels in the sound and the Atlantic Ocean.

Tt was observed that the circulation pattern changes with the corresponding
change in wind speed or direction at any point. The circulation results were
compared against actual water elevations in the sound during hurricane Donna,
furnished by the U. S. Army Corps of Engineers (1961). Due to the limitations of
the field data and uncertainty in the choice of coefficients, strict model veri-
fication 1s not expected. The field data could be used to determine if the model
results are reasomable. It was noted that the general trend of contours was similar.

The model developed here can be used as a powerful diagnostic and predictive
tool in regional water management for rivers and estuaries and hurricane protection
in coastal areas. Given the necessary physical and hydroleogical dataz on a water
body, its inflows, outflows, and wind forces at a time, the changing circulation
patterns can be studied. The model provides tables and/or plots of the computed
results at selected times of flow. Thus, it would be useful in simulating a
time-history of the change in magnitude and direction of velocity and water stage

at any point in the sound. A spatial variation of these paramenters can be obtained
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by drawing water surface profiles along selected longitudinal or lateral sections.
A steady state model can be obtained by simply assigning zero values to all those
terms in the basic equations which involve partial differentials with respect to
time, t.

The model can be used to determine the exchange of water between the sound
and the sea by specifying the appropriate coefficients of discharge, the charac-
teristics of the inlets and the value of mean sea level. Accordingly, the model
can be used to find the flushing time for the sound and also for verifying any
data obtained by field monitoring of the flow conditions. The model can prove
invaluable in studying the expected flooding conditions and designing effective
measures for controlling the resulting damage in coastal areas during unusual
flow conditions, such as hurricane force winds from the most critical direction.

It should be mentioned that in order to improve the model further, more
field data need to be collected on the variation in currents and stage with
respect to time at various points in the sound. The incoming flows should also
be measﬁred over time. Similarly, the direction and veleccity of wind at standard
anemometer heights should be observed at different representative locations in
the area. With more data available, the model can be calibrated with greater
precision. The validity of any assumptions made can also be establishad.

It would also be advisable to test other numerical methods for solving
the equations and for comparing their efficiency in terms of accuracy of results,
stability of the numerical scheme and requirements of computation time. The model
should also be used with other values of inflows and a more sophisticated relationship
for tidal exchange. The effect of changing the grid size and the use of variable
grid size should also be investigated, In the present study, the sound was divided
into six zones for variable wind analysis. If better data are available, a different

value of wind speed and direction can be used at every grid point.
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The solution of equations near the boundaries should also be improved.
Presently, the depth values at boundary points are obtained by geometrical
compatibility. This procedure could be introducing some error in the results.
A better method of handling the computations at the boundary points should be

investigated.
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XI. COMPUTER PROGRAMS

Introduction

The purpose of this manual i1s to acquaint the users with the computer
programs and give pertiment information about their input and output data.

The program listings are also provided. The computer programs'are written in
Fortran IV language and were run on an IBM 370/165 model.

The program is written for Pamlico Sound, North Carolina with a zig-zag
boundary. The program uses the explicit finite difference method for numerical
solution of a set of hydrodynamic equations with appropriate boundary and
initial conditions. The operation of this program produces a time history and
spatial distribution of water depths, magnitude and direction of water velocity.

The general programs can be run for a number of different {flow conditions,
as will be described later, by making minor changes in the input data. The deck
of cards for each program has five parts, that is, JCL cards, main program,
sub?outines, data deck, and plotting program. The JCL cards provide vital
information about the job to the machine operator. The programmer specifies
the time for computations, maximum number of pages for print out, etc. The
main program and other parts are described in the following section. The plotting
program 1s not given because some of the subroutines are not available at other

installations, and the type of plot desired is subject to the individual's choice.

Description of Programs

Main Program

The main program writes the title and assumptions used, specifies real and
integer variables, assigns storage spaces, defines all the variables, initial-
izes all parameters, reads and echo prints the input data, specifies initial
boundary conditions at all points of inflow and outflow, and coordinates all the

desired computations. It sets the basin conditions to be considered and calls




the necessary subroutines for performing the numerical calculations at
interior and bhoundary points in each time step., The results of computations
are printed according to specified formats. The main program also transfers
information to the plotting program through two discs. When the program is
satisfactorily completed, a statement to this effect is printed and the

computations are terminated.

Subroutine WIND

This subroutine computes the shear stress term due to wind at all grid
points at any time. The body of water is divided into six zones and a set of
values for each zone are given as input data. From the data the wind stress

term with longitudinal and lateral directions are determined for any time step

at all interior points.

Subroutine COMPU
This subroutine computes the longitudinal velocity (u), lateral velocity (v),

and depth of water (h), at selected grid points in any time step.

Subroutine HCBDRY

This subroutine computes h, u, and v at the boundary points in any time step.
The values of h at all boundary points are calculated by the conditions of geo—
metrical compatibility. Mid-side points are used in writing the equatioms for
straight boundaries and cornmer points for those at the corners. For points next
to corners, the average of values computed for boundary points on either side are
used. The values of u and v are zero at all boundary points except at inflow and
outflow junctions where they are calculated from the corresponding values at the

nearest interior points or from computed values of discharge and depth.

Subroutine UVC1 C2
This subroutine prints the values of u, and v at all grid points in a

given time step. The values of time step and time increment are also printed.
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Data Deck

This part contains all the input data for the operation of circulation.
The data are punched on cards, using all 80 columns according to specified
formats and are in the order required by READ statements in the main program.
Each new READ statement taps information starting from a new data card.
Plotting Program

The plotting program plots the boundary of appropriate waterbody, velocity
vectors (showing magnitude and direction of velocity) at selected grid points,
contours for depth and necessary titles. The data used in this program are
transferred from the main program through two discs. The program inciudes five
subroutines named CONTUR, PLOTT, INTERP, CONEX, and CONFOL used in computation

and location of appropriate points for plotting the centours.

Description of Input Data

All of the input data required by the programs are in card form. Table 10.2
shows the various characteristics of input data used. The formats used for each
type of data are also given along with pertinent explanations. Input data are
given following the program listing.

The variable wind force data are based upon the actual observations for
Hurricane Donna. The velocity and direction of wind for the different zones
are found by following interpolation. The 16-hour duration used for the hurri-
cane corresponds to the time period from 16:00 hours on September 11, 1960 to
8:00 hours on September 12, 1960. The input data are rearranged and printed

after necessary computations according to the specified formats.

Description of Output Data

The outputs generated by the programs at any time step are of five categories:
Wind speed, wind direction and other information at the current time step.
Values of u and v, all grid points in separate tables.

Values of absolute velocity and direction of water movement and water depth h at
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selected grid points.

Values of absolute velocity and direction of water movement and water depth, h
at all grid points in one table.

Plots of velocity vectors at selected points and contours for h.

Sample listings of the printer output are shown in the following pages.

Use of Basic Programs for Various Flow Conditions

The programs described in this report can be adapted to another two
dimensional body of water by using the appropriate data on its geometry and other
related information. Corresponding changes in the computational steps will also
be needed. However, for Pamlico Sound, North Carolina, the given programs can be
used for various flow conditions with only minor changes in the imput data or

initial and boundary conditions. Some important cases are as follows:

HYDROPS

If the value of wind stress coefficient on data card No. 8 and the discharge
coefficients on data card No. 9 are equated to zero, it would lmply that there
is no wind stress and no outflow. The hydrodynamic (circulation) behavior of

the waterbody can then be studied under various inflow conditions.

UNIWIND

If the Vw and 6 values are kept constant in all six zones and at all times,
the model gives the circulation patterns under the influence of uniform wind
stresses. Depending upon the inflow/outflow values on data card No. 3, and
the information on data card No. 9, the circulation for no inflow and ac outflow

or inflow but no outflow conditions can be obtained.

VARWIND
If the Vw and § values vary in the six zones and with respect to time, then
the circulation patterns can be studied for the variable wind field and any

combination of inflow and outflow.
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TIDALEX

By using appropriate values for discharge coefficients for the tidal inlets,

the effect of tidal exchange on the circulation can be studied.
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DEFINITIONS

CD = coefficient of drag for wind stress, dimensionless.

CM = Manning's coefficient of bottom stress

CORIOQ = Coriolis coefficient

D(1L,J) = depth of water at mean sea level, in ft., at grid point (I,J).

DS = distance step in the x and y-directions, in ft.

bT = time step for computations, in seconds.

G = gravitational constant, in ft./sec.2

H(I,I) = water surface elevation above mean sea level at point (I,J) at
latest time, in ft.

HHS = water depth above mean sea level at Hatteras Inlet, in ft.

HO(I,J) = water surface elevation above mean sea level at point (I,J) at
previous time, in ft.

HMS = elevation of the sea above mean sea level, in ft,

HOC = water depth above mean sea level at Ocracoke Inlet, in ft.

HOR = depth of water above mean sea level at Oregon Inlet, in ft.

I = an index identifying the x-position of a grid point,

IB(N) = an index identifying the x-position of boundary point numbered N.

J = an index identifylrg the y-position of a grid point.

JB(N) = an indes identifying the y-position of the boundary point numbered N.

JL(I) = index identifying the y-position of the boundary pelnt on the
Column I, having the lowest J value.

JU(L) = index identifying the y-position of the boundary point on the
column I, having the highest J value,

KHS = coefficient of discharge for Hatteras Inlet.

KoC = coefficient of discharge for Ocracoke Inlet.

KOR = coefficient of discharge for Oregon Inlet.

KT = a number identifying time, in hours at which wind data are given.

N = a number identifying all boundary points.

NB1(K) = values of N identifying boundary points of type 1.



NB2(K)
NB3 (K)
NB4 (K)
NB5(K)
NB6 (K)
NB7 (K)
NBS8 (K)
NDUM
NI

NJ

NKT

NN
NZ
Ql
Q2
Q3
Q4

Q5

Q6

QHS
QoC
QOR
T
TFIN

THETA(I,J)

li
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values of N, identifying boundary points of type 2.
values of N, identifying boundary points of type 3.
values of N, identifying boundary points of type 4.
values of N, identifying boundary points of type 5.
values of N, identifying boundary points of type 6.
values of N, identifying boundary points of type 7.
values of N, identifying boundary points of type 8.
a dummy variable for counting the rounds of computations.
no. of grid points on the x-axis.

no. of grid points on the y-axis.

the final time for which data are given, in hours.
total number of boundary points.

maximum no. of time intervals as input.

a number identifying the wind zone, see figure.
Neuse River flow, in cfs.

Pamlico River flow, in cfs.

initial inflow from Creocatan Sound, in cfs.

initial inflow through Oregon Inlet, in cfs. (positive for
flow to the sea).

initial inflow through Hatteras Inlet in cfs. (positive for flow
to the sea).

initial flow through Ocracoke Inlet (positive for flow to the sea),
in cfs.

flow through Hatteras Inlet, in cfs.

flow through Ocracoke Inlet, in cfs.

flow through Oregon Inlet, in cfs.

Time, in Minutes

time for which computations will be terminated in hours.

angle which the velocity vector makes with the x-axis, measured
counterclockwise, in degrees.
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TPRINT = time at which printed output is desired, in hours.

U(1,J) = velocity in the x-direction at current time step, at point (I,J),
in ft./sec.

VO(1,J) = velocity in the x-direction at previous time step, at point (I,J),
in ft./sec,

V(I,I) = velocity in the y-direction at current time step, at point (I,J),
in ft/sec.

VO(I,J) = veloecity in the y-direction at previous time step at point
(1,1), in ft/sec.

VL(I,J) = absolute value of average velocity, at point (I,J), in ft/sec.

VWD(NZ,KT) = wind direction in zone NZ at time KT, measured counterclockwise
from the x-axis, in degrees.

VWS(NZ,KT) = wind speed in zone NZ at time KT, in miles per hour.

WSC = a coefficient equal to Cd(palpw) (5280/3600)2 used in the computation
of wind stress, when wind speed is given 1in miles per hour.

WX(I,J) = wind shear stress in the x-direction divided by the water density,
in ft?/sec?.

WY(I,J) = wind shear stress in the y-direction divided by the water density,

in ft.zlsec.2
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UsVELCCITY IN THE X—=DIKECTIUNLFEET RER SECOND
V=VELOCEITY IN THE Y-DIRECTIONL.FEET PER SECOND
V=DEPTH UPTD THE MEAN SEA LEVEL (MSL)s FEET
H=VARIATION IN DEPTH WeR+Te THE MSLs FEET

THE SUHSCRIPT ZERC DERCTES PREVICUS TIME STEPRP

CM=MANNING CCEFFICIENT

CCRIC=CORINADLIS CCEFFICIERNT

G=GRAVITATIONAL CCKRSTANT,FT/5EC SQUARED

al =DISCHARGE TC THY SUGUND FROM NEUSE RIVER ENTRANCE IN CFS5

Q2 =0ISCHARGE TC THE SNDUND FROM PAMLICC RIVER IN CFS

Q3 =DISCHARGE TC THE SOUND FROM RCANDOKE AND CROATAN SOUNDOS IN CFS

Qa=INITIAL GUTFLCw THRCUGH OREGCN INLET.

Qo=INIYTAL CUTFLCw THRCUGH HATTERAS INLET.

Qe=INIYIAL GUTFL.Cw THRGCGUGH CCRACCKE INLET.

VL=Ao3JLUTE MAGNITUDE OF VELOCITY IN FEET PER SECOND

THETA=THE OIRECTION OF VELGCITY IN DEGREES (COUNTERCLOCKWISE FROM
THE X=-AXIS

DT=TIME INTERVAL FCR CALCULATI3NS IN SECONDS

YTFIN=FINAL TIME CF FLCW FCR CCMPUTATIONSs IN MINUTES

NOUM=zA DUMMY VARIABLE FCR CUOUNTEING THE RCUNDS OF COMPUTATIONS

US=sSIZE OF THE RECTANGULAR GRID IN FEET

ic(N) AND JB(IN) ARE THE CCCRODINATES CF THE POINTS 0N BOUNDARY

JMIN AND JMAX ARE MINIMUM AND MAXIMUM VALUES 3F J 40N THE B[OUNDARY
FOK cACH I

IGIK} AND JG(K) ARE CUCFRDINATES CF PCINTS MARKEDL oY CIRCLES
ONE GRID INSIDE ThE BCUNUARIES

NHI(K)= SCUNDARY PLCINTS CF TYPE |
NHZ2IKYI= 3CUNDARY PCINTS CF TYPE 2
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NE3(K)= 3CUNDARY PCINTS CF TYPE
NHa (K= B3CUNDARY PCINTS CF TYPE
NB5(K)= JCUNDARY PCINTS OF TYPE
NA¢{k)= BCUNDARY PCINTS CF TYPE
NO7(K)= BOQUNDARY PCINTS CF TYPE
NBB({K)= BCUNDARY PCINTS OF TYPE

@ ~O0 U & w

GUR= CUTFLOW THRCUGH CREGCN INLET AT ANY TIME, CFS

QHS=GQUTFLOW THROUGH HATTERAS [NLET AT ANY TIME, CFS

QCC=CUTFLUW THROUGH GCRACCKE INLET AT ANY TIME, CFS

KCR=COEFF, 0OF DISCHARGE AT OREGON INLET

KMS=CUEFF. OF DISCHARGE AT HATTERAS INLET

KOC=CQEFF, OF DISCHARGE AT OCRACOKE INLET

HOR=AVERAGE VALUE CF H AT CREGCN INLET AT ANY TIME

HHS=AVERAGE VALUE CF H AT HATTERAS INLET AT ANY TIME

HOC=AVERAGE VALUE CF H AT CCRACOKE INLET AT ANY TIME

HMIL=VARIATION IN THE WATER LEVEL OF ATLANTIC OCEAN WeReT, ITS MSL

VWS=VARTABLE WIND SPEED IN A ZONE AT A TIME, MILES PER HOUR

VWD=VARIABLE WIND DIRECTIGN IN A ZCNE AT A TIME, DEGREES
COUNTFRCLOCKWISE FRCM THE X-AXIS

CUOSCULFFICIENT OF DRAG FCR wIND STRESS,DIMENSICONLESS

W5C=A COEFFICIENT USED TC COMPUTE WIND STRESS WHEN THE WIND SPEED
IS GIVEN IN MILES PER HQUR

WX=VALUE CF WIND STRESS I[N X—DIRECTICN

WY=VALUC OF WIND STRESS IN Y-DIRECTICN

NZ=NUMBERED ZONE OF PAMLICC SCUND FCF VARIABLE WIND STRESS.

KT=TIME cELAPSED FRCM THE START OF HURRICANE. HOURS

NKT=F INAL VALUE CF KT = TCTAL DURATICN OF HURRICANE., HOURS

REAL KORJKHS.+KCC
DIMENSION VLI65,3€6)+THETALES,36)
COMMUN ULBES36) s VIES 33614654 3614U0(65436),V0(65,:36)1+HOIES3I6),
10(65236)4 [d{195)+JB{195) s JU(ES5) » JL(ES) s1G(100) e JG(100) .
2 GeDTDSsDTE0 s MX WY g WXDT s WYDT s CMS Qo GOT 2 GTS o CORDT « TPRINT .
3l.J.M.N-Ql.QN.QZ.OP.QB.QC.DSgDTSSO.TlME.DT.PI.wSC-OQ.QS.QG.NZ-
4VWODLE o1 7) s KToKKTyNKT 4y NI 43 NJsNMaNN i SWX(ES236) 3 SWY (65, 36) + T
SHS (652 36) yKORIKHS o KCC yHVMSL s HER , HHS o HEC
OVWS(6 417} e QO0RsQHS s QUC o VU X{Bs 17} s VWY(ELLT ),
TNBL(40)+NB2(40)} 4 NS3(40)sN04(40) yNBS{4O) s NBOIAO)yNBT(40) 2 NBS(G0),
BNBS{40) s N3ILO(40)
DIMENSION AA{20) +AB(20)+AC{20),AC(20)
I I I I T T I I M ™
INITIALTZATION GOF ALL PARAMETERS
R I I I I T I T I T ™",

KT=1

T=0.
TIME=Q,
MOUM=0

DC 1 [=1e65
DG 1 J=1,35
D{T+J}=0.
UlTIsJd)}=0e
vilsJd)=0.
HM{Ted)=1.
UO{Ts+J)=0.
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Voile+J)=0,

HO(L 4 Jd) =1

SwWX{1+J)=0.

SWY(T+4)=0.
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*k¥E PERMANENT DATA t ¥ L

READ(1+10)DS+CORIDLCM

REAC(1+10) Q1402+03+04:05406

HREAD{Ll,11} COD

WSC=C0*0,002€333

READ(L+10) KORKFSyKCCsHMEL

FOMMAT(/710X+*WIND STRESS COEFFICIENT., CD=",F10.,7/
* 10X, *OURATION GF HURRICANEs HRS. NKT=%,17/
*¥10Xy ' COEFF4COF UISCHARGE AT OCRACOKE INLET KQC=1*',F11.2/
*10X,*COEFF s OF DISCHARGE AT HATTERAS INLET KHS='.Fll.2/
*10Xs"COEFF,OF DISCHARGE AT OREGON INLET KOR=',Fll1.2/
*L10OX.*VARIATIUON IN THE WATER LEVEL WeReT2ITS MSL ¢HMSL="+F11.2)
FORMATC(AF10.2)

FORMAT(F10.7)

FORMAT(3F10,2,F10.06}

FORMAT(6110)

READ(1+30) C(IBIN)N=1,152)

READ(]+30) (JB{N)N=1s192)

READ(L1+30) (JLCE)I=5,61)

READ(1 +30) (JU(TI)21=3+461)

DATA NNBI|NN82'NNG3nNNBQ.hNBS/l3.39'2003lo?/
DATA NNHbvNNB?;thegthQ'NNBIO/a.9i7'31v27/
READ{1+31) (NBL{K)+K=1e+NMNNB31)

REAOD(14+31) {NB2{K)K=14MNB2)

READ(1+311) (NB3{K}sK=1sNNB3)

REAL(1.+31) {NB4a{K) sK=1sANNBG}

REAO(14+31) (NBS{K) +K=1«NNBD)

READC1 4+ 31) (NBGEI{K)+K=1 +NABE)

READ(I 31} (NB7{(K) sK=1+NNBT7)

READ(1s31) {NBHIK) +K=1 s+ NNBS)

READ(1.+31) {NB9{K)+K=14s NNBD)

READ(L+31) {(NHIO(K) +K=1 ¢NN310)

FCAC{1+431) (IG(K)sK=1492)

READC131) (JGIK)sK=1432)

DEPTH WVALUES AT FCINTS MARKED BY CIRCLES CN 0ODOD I CCLUMN
READ (l0120’((0("J'nJ=2036o2’lf=1005.2’

&k CASE DATA * k%
READ(1+18)Y(AALTI)+1=14+20)
REAC(L + 13 (ABII)+1=1,20)

READ{1+18) (AC{I1}:+1I=1,20)
READ(1+15) [AD(I)s1I=1,20}
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c AACT )+ AHCT ) s AC(I)4AD(I) ARE IDFNTIFICATION TITLES
C
REAC(1+10) DT.TFINSDATUM
¢ DATUM I35 THE DIFFERENCE IN ELEVATION SETWEEN THE CONTOUR OF
< ZERD UEPTH AND THE MEAN SEA LEVELe. [T IS VUSFD ONLY FOR
C PLOTTING PURPOSES.
C
READ{(1415) NKT
DO 17 NZ=1,6
READ(1420) (VWSINZIKKT}+KKT=1,NKT)
17 READ(1+21) (VAND(NZJKKT) KKT=1 4NKT)
18 FORMAT(20A4)
C
¢

20 FCRMAT(L7F4.1)

21 FORMAT{17F4,.,0)

30 FOFRMAT{4012)

A1 FORMAT(2513)

J2 FORMAT(1X,1215)

WRITE (3,35)

35 FORMAT (/718X *=1 INPUT DATA I-¢)
WRITE(3.18) {AA(1),1=1420)
WRITE(3.18) (aB(I[)si=1,2C)
WRITE{(3,18) (ACI{I)s1=1,20)
WRITE(3.,18) {(AD(I[)+1=1,20)

40 FORMAT{//71C0X.'FEINAL TIME IN MINUTES TEFIN='3F10,2/
1 10X« *TIME INCREMENT IN SECONDS DT=%,F10.27
2 10X4"SQUARE GRIO IN FEET DS=*,F10,2/
5 10X+ *CORIOLIS COEFFICIENT CORIGO=*4F10.2/
€ 10X+ *MANNING COEFFICIENT CM=? Fl0e2/
7 1OX s 'NEUSE RIVER DISCHARGE QL= +F 1027/
8 10X *PAMLICO RIVER DISCHARGE Q2=",F10.27
G 10X "ROANOKE AND CRCATAN ODISCHARGE Q3=%,Fl0.2/
* LOXs*CUTFLCw FROM CREGCN INLET Q4= 4F10.2/
* 10X+ *OUTFLCW FRCM HATTERAS INLET Q5=t*,F10.2/
% 10X+ *CUTFL.Cw FROM CCRACCKE INLET Q6="',3Fl0.2)}

WRITEL(3I+40)TEFINsDT 4DS4sCCRIGCCMaQ14Q24+G3408,05,05
WRITE(3:2VCOJNKT 4 KOC sKHS o KOR 4 HMSH,
WRITE(3.a41)
41 FORMATI(/5X.*VARIABLE wINC SPEED AT DIFFERENT VALUES 0OF NZLEKTH*/)
WRITEL3Iva2) (KKT4KKT=1,17)
42 FORMAT(/ZTXs 1 T{3AX 4" (2, [2,%)0)/)
DO 43 NZ=1,6
43 wRITE(3446) NZJ{VWSINZKKT)KKT=]1,MNKT)
WRITE(3,.,44)
44 FORMAT{/5Xs *VARIABLE wINC CIREC. AT CIFFERENT VALUES OF NZ.EKT®/)
WHITE(3,42) (KKT.KKT=14+17)
DO 45 NZ=1.6
45 wRITE(3:4A) NZy(VHDINZ+KKT)KKT=1,NKT)
48 FORMAT {3X " {" 2124 ) 41 T{2XsFS5al))
47 FORMAT(/730X+"LOWER AND UPPER BCUND OF J FOR EACH 114}
WRITE(3.47)
48 FORMAT(//13X a0 =1=% 3SXs P UL{I)? 46X s JUCL) " o7X ot == ,6X " JLIT)?
LaDXs P JUCT ) 46X " =T =9 oSXeVJL(T )P oS Xs?2JU(TI /)
WRETL{3,48)
D 43 [=5.23
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T1=19¢]
[2=38+1
497 WRITL(3,70) TadL L) e dUCTI)aTlaJiCIE)adUlTE) 024 JdL(I2)JULT2)
70 FORMAT(5X«2(5X+[59))
T8 FORMAT(//S0Xs*COCRDINATES GF THE PCINTS ON THE BOUNDARY'Y)
a0 FORMAT(///IOX.'-N—'-SX.'([B(ND.JB(N))'olox.'—N-'.SX,‘(IB(NI-JB(NI)
1 oI OXe 0 =N=*3S X " {IBIN) s JBIN)II" 410X, *=N=®,5X,* (IBIN)»JB{N))*/)
WRITE(3,81)
81 FORMAT({//353X+YCCCRDINATES CF PCINTS MARKED B8Y CIRCLES ONE POINT GR
LID INSIDE THE BOUNDARY®)
WRITE(3.,82)
82 FGRMAT(//IIOX.'—K-‘.SX.‘(IG(K).JG(K))'olOX-'—K—'oSX"(IG(KicJG(K)l
l‘-lOX.'—K-'.5x.'([G(Kl.JG(K))‘.IOX"—K—'.'(IG(KI-JG(K))'/I
DO 83 K=1,23 '
I1=23+K
[2=46+K
[3=69+K
B3 WRITE(3,100) KeIGIKI+JGIKI v Il 4IG{TI1) 2 JGCTI1)aT24IG(I2)4JdG(I2),
113,1G(I3)+JGE(IN)

WHRITE (3,73}

WRITE{3.80)

DC 90 N=1.48

MNl=48+N

hN2=G6+N

hN3=j4a+N
90 WRITE(I+100) No IBINIJHIN) oN1s IEC(N1D)aJIINL) oNZ.

1 IB8{N2Y+JBI{NZ) sN3s IB(N3I),,JUBIN3)
I0C FORMAT (4(BXsIlSySXa?(*, IS5 1?5154} ))
101 FORMAT{//20X,"830UNDARY PCINTS CF TYPE
102 FOKMAT (/720X *HCUNDARY PLCINTS CF TYPE
103 FORMAT({ /720X *BOLNCARY PCINTS CF TYPE
104 FORMAT(//20X,s *BOUNDARY PCINTS COF TYPE
105 FORMAT{//20Xs "NOUNDARY PCINTS CF TYPE
106 FUUMAT(//20Xs *HOUNDARY PCINTS CF TYPRE
107 FORMAT(//720X«*3CUNDARY PCINTS CF TYPE
108 FURMAT( /720X *BOUNDARY PCINTS CF TYPE
10G FOFRMAT{ /720X *BOUNDARY ACINTS CF TYPE
110 FORMAT(//720X. *BOUNDARY PCINTS GF TYPE
112 FORMAT{IO0(LIX+134%( %02+ %4I2:%)%)})
120 FORMAT(13{F4.0))

laizeNAL{KI* /)
I.E«NB2(K)*/)
I1+E«NBI(KIY/)
T+E-.NBa(K}?/)
IeEeNESIK)Y /)
TeE«NBOH(KIY/ }
I«EaNBTIK)}" /)
leE+NRB{K)*/)
TaEasNOF(K)}Y/)
O l1eEa s NRB1O(K)*/)

R s O Rl PO e

WHRITE(3,101)

WRITE(3,112) ((NBIIK)}2IBINOLIIK) } e JEIRNBLI(K))) oK=]14NNEL)
wRITE(3,102)

WRITE(3.112) (INB2(K )} s THINB2(K}) s JHINS2(K)I) +K=19sNNB2)
WRITE(3.,103)

WRITE(3,112) {(INB3(K},IBINB3I(K) ) JE{NBI(K)}IK=1sNNB3Y
WRITE(3.104}

WHRITEC(3,112) ({NBGE{K)IAI(NHG(K) ) JE(NBA(K)))sK=]1NNBS)
WRITE{(3,105})

WRITE{3.112}) ({NBSIK) s IB(NBE(K) ) »JBINBS(K)))}s K=1sNNB5}
WRITE(3.106)

WHITEL34112) (INBEIK)JIB(NGBE(K) }2JEINBHIKY)I) +K=1 4NNBE)
WRITE{(3.,107)

WRITEL{3.112) (UINBZ2{K) Sy IB(NBTL{K) I+ JEINBTIK) ) ) o K=1aNNBT)

80




LaoviL 21 MAIN CATE = 76246 16747737

OO0 O N0

WRITE(3.1038)

WRITEC(34112) ((NBS(K)IB(NBBIK) )+ JBINBB{K}) )+ K=13NNBS)

WRITE(3,109)

WRITE(3,112) {(NBY(K)+IBINBI(K) )+ JJBINBI(KI) ) 1K=1+NNBI}

WRITE(3+110)

WRITE{3+112) ((NBIO(K)+IBI(NBIO(K))+JBINBIO(K))) K=1,NNB10)
LOCCAL DEPTHS AT ALL GRID POINTS

DEPTH VALUES AT POINTS MARKED BY CIRCLES ON EVEN I COLUMNS
DO 130 [=2:64,42
DC 130 J=3435.:2
130 DUI+d}=(D(I=13J41)4D(I=1,d=1)+4D(I+1,J-11+D([+1sJ+1)) /4,
DEPTH VALUES AT ALL PCINTS(I,1)s I=1,65
OC 132 [=1e6E,.2
132 DL{Le3) = DEI.2)
D0 134 [=2.064,2
134 DI+l = D0L43) .
DEPTH VALUES AT PCINTS MARKED 8Y SQUARES CON EVEN 1 COLUMNS
DO 140 [=2+64,2
DC 140 J=2,34,2
140 DELsI)=(D(Lsd=10+40(14J+1)+D0(T-1,J)+D(121sd)}74,
DEPTH VALUES AT POINTS MARKED 8Y SQUARES ON 3DD T COLUMNS
DO 190 [=3+63,2
DD 150 J=3,435,.2
150 DCLsd)={D(ILsd=1 14001 +J+1)+D{I-14J)4+0(T+1sJ})74,
WRITE (3,155}
155 FORMAT(?1%,710X,"LCCAL DEPTH AT MEAN SEA LEVELs D AT ALL POINTSY)
WRITE (34160} (JsJ=5,191)
160 FORMAT (/7X4185(03Xs°(%5s124")%)27)
165 FORMAT(//77X+18{3Xe ("4 12:9))/}
DO 170 1=5.061
170 WRITE(3 18011 (DIT43)44=5:+19)
180 FORMAT (3Xs"(*"+12:')%215(1X.F€EL2))
183 FORMAT (3Xs*('3[25%)%416{1XF6EL2))
WRITE (34165) (J,J=20+35)
DO 190 1=5.61
190 WRITE(3:1835) [,€(D{T+J)eJ=20:35)

g g Y L 21112 R 2 SRS F SRR L L 2.
INTTI AL BOUNDARY CCNDITIOCNS
VALUES OF UV +&H AT TIME=Q0,0 MINUJUTES
KR ARE KRR KRR AR R KRRk AR SRRk Rk kR kg kR kR * K k&

NEUSE RIVER JUNCTICN WwWITH SCUND

GN=CG1l/7 (4. 0%0DS)

N=192

I=18(N}

J=JBIN)

UL o) =QN/Z{O{LsJY+H{TL.J))
VIIsvJd)=0,.

UCE+]l,d)=ulTsJ)

U142, d)=U(L4+J)
UlI+3,0)=0lT.4)
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00 192 N=1s4

T=IB{(N)

J=JBIN)

UCT 2 J)=aONALD(T+J)+HLT+J))
V(1+d)=0,

UCI+1J)=U(Td)
ULT+24+d)=U(T+4}
UlT+3,30)=U{T+J)

PAMLICC RIVER JUNCTICN WITH SQUND

QP==02/ (4 +*D5S}

DO 193 N=20.24

I=IB{N)

J=JB{N)

U{Led)}=0a
V(1+Jd)=QP/(D{LsJ)Y+H(1,4J})
VIiTsd=11=v{l, )
V{TeJd=23=V{14sJ)}
ViIied=3)=VI(Is+J)

CROATAN AND ROANCKE SCUNDS

GC=-a3

DO 194 N=88,91

I1=18(N)

J=JBIN)
U(Led)=QC/(3.%DS*{D(IsJ) ¢ (L1,J)))
VT e+J)}=0e

UCT=1sd-1)=Ull+d)
V{I=1lsd=1)=V{14+J}

CREGON INLET SBETWEEN PAMLICG SOUND AND ATLANTIC OCEAN.

BC 169 N=104,1086

I=18(N)

J=JB{N}
U(IQJ)=Q4/(200*DS*(D‘IUJ"’
V(I +J4)=0.

HATTERAS INLET HETWEER PANLICC SCUND AND ATLANTIC OCEAN

DO 196 N=150.152

=I8({N)}

J=JB{N)

UL +J)=0s

V(I J)1=~Q5/(2.0%CS*(D{(I,J}})

CCRACLKE INLET BETWESEN PAMLICC SOUND ANG ATLANTIC QOCEAN

DO 197 N=1€4.16€

I=IB(N)

J=JBINY

UClsJ)=0a

Vi) =—Q67(2:04CS*{D{1,J}))}

82
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NN OD

noOnn

Do oOn

aNaNsNaly!

WRITING THE VALUE CF UsVEE AT TIME=0,0 MINUTES

kkkrkpk ke kedRkREMCVE THE FOLLCWING CARD [F YQU WANT PRINTOUT
OF VALUES AT ALL PCLCINTS kR kkek kb kR kR kR kR kR Rk Rk k¥
GO TO 202
200 CaALL uvClcz
202 WRITYE(34+310) TIME,DY
WRITE(3,203)
203 FORMAT (10X +*VARIATION IN DEPTH +Hs AT SELECTED POINTS*/)
WRITE(3+160){JeJd=54+35:5)
oo 204 I1=5+61+5
204 WRITE(3+:180) [1:iH(IsJ) s d=5435:3)

P * * * % *

THE FOLLOWING INFORMATION IN THIS SECTICN IS TO BE USED LATER IN

FLCTTING PROGRAM

WRITE(10,123 TFINDT,Q1,G2+Q3»u5C

WRITE{10s30) (IBI(N) N=1.,192)

WRITE(10+30) (JBINIsN=1,192)

IMIN=5

IMAX=61

WRITE(10,30) TMINS IMAX s (JL{T }oJULT ) ISIMING IMAX)
ek kR kR k kR ko Rk kk ko kR Rk kR kkkkkkk

COMPUTATION OF SCME CONSTANTS TO BE USED LATER
TP rEvrpRarprpegnpupnp s W SR P T T

DTOCO=DT/60
DTDS=DT/{ 2+ %¥D5)
DTSSQ=DT/{DS*DS5)
CORCT=CORIO#*DT
G=32.2
GDT=G*DT
GTS=G*DTDS
CMSOG=CMXCM
PI=3.1416
WRITE(3,2051
205 FORMAT (/740X *PRINT CUT CF THE OIFFERENT COMPUTED CONSTANTS®)
WRITE(3:206) (DT60.0TDSDTSSCCORDT G+GDT,GYSCM5Q.PY)
206 FORMAT(Y DTE0=,F10e¢5+s1X2"DTDS=?3F 1051 Xs%0TSSQ=*,F10+8+¢1X,
LPCORDT = 4 Fi 0Dl X+ G 3 FSa2slXa?GDT=! 4 F154541Xs*GTS="+F10.501X
¥ICMSQ=2"4F10e5.7 ' PI=?4F10.48)

DC 207 NZ=l+6
DC 207 KT=1.hKT
VUXINZ s KT I=VAS{NZ+KTI*VUS{NZ+KTIHCCS(VNDINZ KT )%P1/180.0)
207 VEYINZ+KTI=VWSINZ KT RVWSINZKTIRSIN(VUWDINZKT)I*PI/180.0)
KT=1
208 READ(1+203) TPRINT
209 FORMAT(Fl10.1)

R R e P T T ST TR L PRSI IT IS 22 S LS S A 2 2 2 L 2

COMPUTATIONS FOR U.V AND H AT ALL GRID POINTS.
P P T I T T F L YT TSI LSS I RS SRS SRS LA S S A 22 Rl bl bbb bl
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210 TF (TIME.GE(60,%¥KT)) KT=KT+1

C THE AHOVE STEP IMPLIES THAT AT TIME=0.0 MINUTES KT=1 HOUR AND IT
C WILL HAVE THE SAME VALUE UNTILL TIME=59.0 MINUTES « SIMILARLY
C WHEN TIME=60.,0 MINUTES, KT=2 HOURS.

TIME=TIME+DTHO
- NDUM=NDUM+ ]
212 T=TIME=ED % {KT=1)

CONMPUTATION FOR UsV AND H AT INTERIGCR GRID POINTS MARKED B8Y SQUARES.
HYDRODYNAMIC EQUATIONS ARE USED FCR ALL THESE POINTS

Nnonn

214 CALL WwWIND
DO 215 I=64+60,2
Jl=JL({I}+1
J2=JUil -1
DO 215 J=J1+4d2.2
WX=wSCRSWX{TWJ)
wY=wSCxSwyY (..
WAXDT=wXxDT
wYDT=uY*0T

215 CALL CCMPU
DO 220 I=7:59+2
JI=JL{T)+2
J2=Jull)y=2
DO 220 Jd=Jl+J2s2
WX=WSCESWX{ T J)
RY=WSCxSWY{(I,J}
WXDT=wX*DT
WYCT=wY*DT

220 CALL COMPU
DO 2249 [=7+45G.2
JEJL(L)+1
WX=WSCHSWX{LJ)
WY=wSCkSwY(IL,J)
WXDT=wX%3T
WYDT=wyY=DT

225 CALL COMPU
DO 230 [=7+59,2
J=JudL)-1
WAX=WSCRSWX(14J)
wY=wSCxSWY( [eJ)
WXLDT=wnX*DT
wYDT=wY*0T

230 CALL CCMPU
COMPUTATION OF WUsVY AND H AT PCINTS MARKED B8Y CIQCLES ONE GRID

INSIODE THE BOUNDJIARY . HYDRODYNAMIC EQUATIONS ARE USED AT
THESE PCINTS

DO 227 K=1+52
I=EG{K}
J=JG(K)
HXZWSCESWX(14J)
WY=wSCkSwY(T1,J}
wXDT=aX*DT
WYDT=wY=*DT

227 CALL COMPY

C

aOonn
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COMPUTATIUON OF U.Vv AND H AT ALL CTHER INTERIAGR PLINTS MARKED 3Y
CIRCLES.,. AVERAGING THE VALUES AT NEIGHBURING POINTS IS
UStEw AT THESE PQOINTS
DO 240 [=7+45G,2
JI=JL(II+3
J2=JU(1)=3
D0 240 J=JdleJd2a2
UCT o)== e d=1)+UCT o J+1)4ULT=14J0+UlLI41,J))/4,
VUEe )=Vl 40=1)4V Il 41 ) 4VII-1eJ)+ViI+1aJ2)/ /0,
HCIL o JI={H{T s J=1)4H{ 13 J4 1) +HII-14J)+H{TI+144)) /4,
240 CONTINUE
00 250 I=8B,58,2
Ji1=JL(1)+2
J2=JuUll)=-2
DD 250 J=Jdl+d2.2
UlTeJd)={UCTI s =1)+U(TsJ#*L}+ULI=1J)+U{I+]l.J})74,
VIl ad)={V{TL 4 =104V Lo+ ) 4+V(I[=14Jd)+V(I[+)eJ))/ /.
H{T+JIS{HC T s d=1)+HT o J+1)+H(I=14J)4H{T 41 d)) 74,
250 CONTINUE

s alEala

COMPUTATIONS FOR UsVv AND H AT GRID POINTS ON THE BCUNDRY.

o000

CALL HACBORY

CCAVERTING YTHE CURRENT VALUES INTO THE PREVICUS TIME STEP VALUES
FCR THE NEXT TIML STEP.

A0 NN

258 D 260 [=5,61
DC 260 J=5,35
UOLT+d)=UlTJ}
VO(T+J)=VIiIeJ)
HO=H{§ s J)+D( 1, J)
IF {(HOsGE+1+0} GC TC 25%
HlLsd)=140=-D(LEsJ)

226 HO{I«J)=HIT+J)

260 CUNTINUE
IF{TIMELEQ+TPRINT)} GC TC 270
GO YO 210

I F s R R I R P R E R S E R R R RS S RS R R S R R 22 R L L
CALCULATICN CF ABSOLUTE MAGNITUDE CF VELOCITY AND ITS DIRECTION
EREEEE TR R KR RN KRR RR R Rk ke kR kRN KRRk kR kk ko kR kK FF

22027 UsE Il=1s IF YCUL WANT VALUES AT ALL PCINYS.
Use Ii=5 FOR VALUES AT SELECTED POINTS
270 11I=%
DU 300 I=5+60.11
DO 300 J=5.35.11
ul=u{ls.Ji
vi=v{lsJd)
VLIL»J)I=5CRT({ULI*Uul+Vvi*Vv])
IF{ULl e GTe0e0aANDAVIWEQaOe) THETA(LI 2 J)=0.
IF{Ul sEQeQOe0aAND V1 4GTe0as) THETA(IJ)=S0.

OO OO0 N
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LF(UL LT 0.0, ANDeV1cEQeO4s) THETA{I +J)=180s

IF{UL +EQe0eDeANDAV1 4L To0s) THETA(LJ)=270.

IF{ULaEGe0e0aAND oV aEQaOa} THETA(L»4)=360.

1F{ULsGT 00 eANDeV14GTo0e) THETA(TI+J)=180.,%ATAN(VI/UL}/P]

IF{ULl+4GT oD Qe ANDaV]1alTeO4) THETA(IsJ)=360++18B0+¢ATAN{V]I /L) /PI
300 IF{UL+aLTa0e0sAND V] sNEaOa} THETA(I+J)=180++180,*ATAN{VLI/U1}/PI

g S S L E L e I LI E s PP S SR 22 2 22 S 2l 2 )

PRINT CUT OF THE RESULTS
P L ar e e P T S T T i S LS F ST 22 S SR 2222 2 2

WRITE(3,310) TIME.OT
wWRITE(3+303)
303 FCRMAT(/S5Xs "WRITING THE VALUES CF H{l«J)e D(1+J)s AND THEIR SUM,HOD
11 AT ALL POINTS wHERE IT WENT BELGOwW 1.0 FEET*/)
DO 205 I=5.461
DO 303 J=7s.31
HOLI=H(L 4J)+D(1,4)
IF fHD1.GE»1.0) GO TC 305
WRITE (3+306) TsJeH(I4J)sD{I4+J)HOL
HD1=1.0
H{Esd)=1a0=-D{(14sJ)
3048 FORMATL® AT POINT ("3 12+74%302:%02 HT14J)=?,F6a2+5X+"D(1,d)=",
LF6 225X 'HFDLI =%, FHEW2}
305 CONTINUE
310 FORMAT{®"1%,/"' % TINE=® ,FR,2+2X+'MINJUTES. THE TIME INCREMENT USED I
1Ss UT=? ,Fua2s2Xs *SECANDS?)
wWRITE(3.311)
311 FORMATI(/Z//71X.*DUTFLCW DATA AT DREGONs HATTERAS, AND OCRACOKE INLETS
I RESPECTIVELY'/}
WRITE(3,312) QCRWKECRHCRQHS KHS +HHS +QQC o KRCC+HOC
312 FORMAT{IX ¢ P QORT VY 4F 104291 Xs 'KORT*4F 104241 Xs"HOR="3FSa10s1lX,
1 TOHSZ® qF 1020l Xy 'KHS="3F10423s1 Xy "HHS=" 3FSalel X,
TQAOC=" 4 FLlO 4241 Xs"KOC=3F1l022:1Xs "HOC=" 4FS5417)
¥k hrrxkk Rk kXREMOVE THE FOLLOWING CARD If YOU WANT PRINTOUT
AF VALUES AT ALL PCINTS kkrksakkbrnrdkehhehdarrnkukaankihs
GO TO 313
314 CALL uUVClC2
313 WRITE(3,310) TIME.DT
WRITE (3,315) NDUM
315 FORMAT{ /' HNUMBER CF TIME STEPS COMPLETED=",IS/)
WwRITE (3+320)
320 FORMAT (/745X .'CCNVPUTED VALUES OF VL .THETAEH AT SELECTED GRID
1PCINTSY /)
WRITE (3,330}
330 FORMAT (/78X "GRID POINTY 37X ? VL. * s TX+s *THETA " »8X+"H* » 17X,
19GRID POINT® . 7Xs'VL® 47X+ *THETA® 48X 'H* 42X/)
DO 340 I=S5,.30.5
{A=1+30
DO 340 J=5335.5
340 WRITE (34450) TaJdeVLUT sJ)+sTHETA(L s J)eH{T o dduTAIsVL{TALJD,
I1THETA{TL A J} sH{TALJ)
IS0 FORMATLIOX 4" (" ol 340,532,303, ) ' s6XeFausls2(EXFSe1)slEX
120" 403470231347 ) ' EXeFGa1+42{EX2FSel))
khkEhk e kR kAKXRREMCVE ThHE FOLLOWING CARD IF YOU WANY PRINTQUT
OF VALUES AT ALL PGCINTS ITEES RSS2 233332+ 238 233222 228
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GO TO 492
351 &RITE (3,310) TINME,.DT
WRITE (3.410)
410 FORMAT{//45X+ *"CCMPUTED VALUES CF VL+THETA AND H AT FACH GRID POINT
1+7)
WRITE (3,420) {(JsJ=6,10)
420 FORMAT(/4XsS{IX e {* 4124 )" .6X)7)
WRITE {3,430)
430 FORMAT (/5X+S{6Xs?VL" 41X+ THETA® 43X,°H, 1X}//)
DO 440 I=5,€61
440 WRITE (3,450) (Tl VLOL o) THETALL o J}sH(T 3 J)sJ=6,10))
450 FORMAT (% *,0(* [2,9)%,5(a4XsFl4191Xs2FSel))
WRITE (3,420) (JsJ=11415)
WRITE (3+430})
DO 460 I=5%5.61
460 WRITE (3.450) (Lo VLIIsJ)sTHETA(L +J) eH (I 3L} d=11,15))
WRITE (3+420) (J:J=156420)
wWRITE {3,430)
00 470 I=5.61
470 WRITE (34450) (I 4s{VLCI 2 JY+sTHETA(L sd}sH{I 20} =16,20))
WRITE (3.,420) (J.J=21,425)
WRITE (3,430}
D3 480 [=5%.61
480 WRITE (3,450) (T o VLIL s J)sTHETACTI s d) sH(L ) Jd=21,25))
WRITE (3+420) (J+J0=26,30)
WRITE (3,430)
DO 490 [=5.,61
490 WRITE (3+450) (Is{VL{TIwd)+sTHETALTL sJ)sH(TI s J)+J=26,30))
WRITE (3,420} (JeJ=31,35)
WRITE {(3.,430)
D0 491 I=5,61
491 WRITE (34450 T+ (VLT 4 J)+THETA(T o d}sH{T+J)9J=31,35))
C THE FOLLOWING INFCRMATICN IS FOR DRAWING VELOCITY VECTORS IN TYHE
C PLOTTING PROGRAM
462 WRITE{(10,493) TIME
493 FORMAT(FS3,.3)
DO 494 I=5430.5
TA=[+30
DO 494 J=5,35.,%
494 WRITE (10+496) T JaU(Tsd)aVIiLled)sVLIT s J)sTHETA(T o J)sTAsJeULTALI),
IVETA s J}+VLITAL I} s THETA(LIA,J)
496 FORMAT(2(2[4+3F742.FR.21))
C THE FOLLOWING INFORMATICN IS TO DRAW THE CONTOURS FOR DEPTH.
NPCINT=0
WRITE(4) NPCLINT
GINT=1.
WRITE(4) GINT
IMIN=5
IMAX=61
DO 510 I=IMIN,IMAX
JSTRT=JL(T}
JSTOP=au{ )
WRITE{(&4) [ 4JSTRT,L,JS5TQOP
DO S00 J=JSTRT.JSTCP
S00 HS(1+J}=100*{H{L ,J)+DATUM)
S10 WRITE (4) (HS(I+J)+J=JSTRTLJSTOP)
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HS(I1¢J)=100.%H(I4+3) [S USED BECAUSE THE CONTOUR INTERVAL HAS 7O BE
SPECIFIED AS AN INTEGER, HOWEVER, DURING THE ANNOTATION OF CONTOUR
S, THE VALUES OF HS ARE CIVIDED BY 100. TO SHOwW THE CORRECT VALUE
OF DEPTH.H
NPOINT=1000C0
WRITE(4) NPCGINYsNPCINTsNPCINT
IF (TIME.LT.TFIN) GC TC 208
WRITE {(3,950)

550 FORMAT(//10X+? THE PROGRAM HAS BEEN SATISFACTORILY COMPLETED®/)

551 5TaP
END

[l e
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LEEE L 2T T JU T prnmggmn
SUBROQUTINE wIND
L LT R T IO R R TR

1747737

COMMON U(65236)aVI65436)3H(05:36)+U0(65+36)+V0L(65436),H0(65,36)
1D(65¢36)s IBULIS)»JUB(195) 4 JU{ES) e JLIES) LIG(100),4G({100),
2 GeDTDS+DTOEO e WX+ WY s WXOT s WYDTsCMSQeGDT s GTS2CORDT 4 TPRINT,
3l sJeMiNsQLl e QNI Q23 GP 4y Q3+ QACsDSeDTSSATIMELDT PILAwSCQ8,Q5,Q6,NZ,
AVED (601 7) o KT o KKT 4 NKT o NI s NJ2NMoNNSWX(ES, 36) 5 SWY( E5+36) 47,

SHS(65436) +KUR+KHS ¢ KOC s HMSL s HOR s HHS s HOC &
OVANS{O6+17T) +Q0R+AHS s QOC + VWX{B 4 1 7)o VWY(EL17)

TNBL(40)sNB2(40)+NBI(a0) +NB4(4%0) +NBS{40),NB6E(40) 4NB7(40).NBB(40),

NBI(40) yNB10(40)

SUBROQUTINE WIND COMPUTES THE COMPONENTS ALONG THE X-
CF THE SQUARE CF THE WIND VELOCITY IN SQ. FT/ SEC.

GRID POINTS AT A GIVEN TIME

IF{KT«GENKT) GO TO 250

DC 240 I=1.22

00 240 J4=1,20

NZ=1

SWY(T s JI=VEYINZyKTI+{VUYINZ+KT+1)~=VUYI{NZ+KT))RT/6D,
SWX{L ¢ JISVAEXINZ KT )+ {VUX(NZ s KT+1I=VWUXINZ+KT)IIE®T/ 60,
DO 241 I[=23.47

DO 241 J=1,20

NZ=2

SHUY(IsJISVAYINZsKTI+{VNYINZ KT+#1)=VWY{NZ+KT))I*T/60.,
SUXCIsJITVAXINZ KT I+ (VWX {NZJKT+1)=VWXI{NZKT)}%*T/60.
DD 242 1=48,60

DO 242 J=1,20

NZ=3

SHY(L o J)=VWYINZ+KTIH+{VUYINZKT+]1)}-VAUYI{NZ:KT})*T/60.
SWXLT o I)=VHXINZ KT I+ {VWXINZ KT+ )=VWXI{NZ KT))%T/6Q.
DO 243 [=1,22

DC 243 J=21.35

NZ=4

SHY{ I+ J)=VUEY(NZoKTI+{VEY(NZsKT+L1)=VUYINZKT)I}*T/60.
SWX{IsJ)=VEX{NZsKTI+{VEX{NZ KTH+L1I=VWXINZJKT)II%®XT/60.
BO 244 I=23+47

0O 244 J=21.,35

NZ=5

SWY(I s J)=VAY(NZoKT I+ {VOYINZyKT+L)=VWYINZ+KTII*T/EQ,
SWX{L+JI=VAXINZ s KT I+ IVWXINZsKTH#1)=VaXINZKT))%T/60.
DG 2432 [=48.60

DO 245 J=21,3%

NZ=6
SWY(Lsd)=VaHYINZKTIH+{VRYINZKT+1)=«VNY(NZ+KT))I®T/60.
SWXC(I s JI=VHXINZ o KT)+IVEXINZSKTH+1)=VWXINZKT))*T/60.
GO TO 270

KT=NKT

DO 256 [=1,22

DO 256 J=1.,20

NZ=1

SWY{T »JI=VaY{(NZKT)

SWX(I +d)=VAX{NZ,KT)

DO 257 1=23.47

89

AND Y= AXIS
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258

259

261

2€3
270

21

00 257 J=1,20

NZ=2
SWY(TsJ)=VAY(NZ,KT)
SWX(IsJ)I=VANX{NZLKT)
DO 258 [=48,60

00 258 J=1,20

NZ=3
SWY(I s JI=SVUYINZ KT}
SWX{I s J)=VEX{NZKT)
D0 259 1=1,22

0Q 259 4=21,35

NZ=4
SWY(LyJI=SVWNYINZ,KT)
SUX{I o JI=VUX({NZ,KT)
DO 261 I=234,47

DO 261 J=21,35

NZ=5
SWY{ILsJ)=VUYINZLKT)
SWX{I+JISVWX(NZKT)
DO 263 1=48,60

DO 263 J=21,35

NZ=§&
SWY(L+JI=SVHY{NZ+KT)}
SWX{IsJd)I=VUXI{NZKT)}
RETURN

END

winND
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C

C

s Mol

0on

Ak kAR OK R R Rk Rk K
SUBROUTINE CCMNPU
WA R Rk R Rk A
REAL KOR+KHSKCC
COMMON U(ESe36) e VIBS43E) {65336 U0(654363+V0(65,:36) .HO(E5.36)+
1D(65436)+1BC195)sJBC195)4JUCOS)+JL(65)+IG(100)+JG(100),
2 CoDTDS+DTOO s WX s WY s WXDT o MYDT 4CMSQeGDT s GT S+ CORDT ¢ TPRINT,
3LeJsMsNsQLsQONI Q2+ 0P+ Q34 GCsDS s DTSSOTIME DT 4P L WSC Q6 ,05,064NZ,
AVAED(E 41 7) s KT KKToNKTa NI o NI sNMaNNoSWX(65,36) 2 SHYI{ES+36) T,
SHS{€5+36) +KOR s KHS s KCC s HMSL « HOR yHHS s HCC
GVWS(6417)sQORsQHS s QOC s VAXISE 41T, VRY{6E,17),
TNB1(40),NB2(a0) s NBI(40) 4 NBA(A0) +NBS(40)  NBE(40) s NB7(40) «NBB(40),
8NBI(40)+NBLOL{40)

SUBROUTINE CCMPU CCMPUTES U, VEH AT SELECTED GRID POINTS

UBAR=(UOCTI+1 4 J)+U0CTI=1,30)+U0CT4J¥1)+UOCT 4 U=1))/4,
VBARZ=(VOUI+]1 ) +VO(I—-14J)+VO(I 4 J+1)4+VO(IsJ=-1))/00
HBAR=(HO(I+14J)}+HO{I=14J}4HO(T o+ 1)+HO(I 4 u=1)2/ 4,
THE STEP BELOW INMPLIES THAT WHENEVER THE TOTAL DEPTH AT A POINT
FALLS BELOW 1.0 FOAOTs IT IS CORRECTED FOR FURTHER COMPUTATIONS
FOR UsVsAND He
HO=HBAR+D( I 4 J)
IF {HD+GTels0) GC TO £40
HEBAR=1+=D{1,J}
HD=1.0
€40 RAU=SQRT(UBAR®UBAR + VEBAR®VBAR)
IFIABSIRAD)«0sl1l} 65146514650
651 SF=0.0
GO TO 6€0
650 SF=CMSQ*SARTIUBARYUBAR+VEARXVBAR )}/ (2:.22%HD*%{4./3,)}
660 ULl J)==UBAR2(UO(I*+1,J)-U0({-1:+J))}*DTDS
1 -VBARX{UO(IL J+1)~UD(TI +J-1))*DTDS
2+CORDTEVHAR-GTS*{HO(I+]1 +J)~HO{(I-14+4))
J+WADT/LO( L J)+HO{IsJ) )~SFRUBARXGUT+UBAR
V(I 4 J)==UBAR*(VO{(I+14+J)=-VO(I=-1,J))*DTDS
1 ~vBAR®(VO{I[,J¢1)}=VvO(l,J-1))%DTDS
2=CORDT*USAR—GTS*¥(HO{I ¢ J+1}=HO{[sJ~1))
I+WYDT/LD(T+J)+HO( [ 23} )=SFEVAAR*GDT+VBAR
HIL o 3)==(UOLT415J)%(HO(I+LsJ) 4001414 J))=U0LTI =13 )% {HO{TI=1pJ)}
1 +D{I=12J) P )*DTDS~(VOU(LsJ+1)*€(HO(I+I+1)4+D{(T+J21))
“YO{lsJ=1)e(HO{L,,0-1)+0{1:0-12))*xDTDS+HBAR
680 RETURN
END
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C
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WK ok R K KR K ok
SUBROUTINE HCBDRY
A ok ok ok ok o R kK
REAL KOR,KHS.KOC

COMMUN UCES»36) e V(05+36) eH(654+36)4U0(65:36),V0O(ES5:36) HOLES,36)»

10(65.36’.[8(195).JB(IQS)-JU(&sJQJL(65)'IG(100,.JG(1001'

2 GnDTDSnDTﬁOy‘KoUY"XDT.'YDT'C“SQ.GDT.GTS;CDRDT,TPR!NT.
31thMiNlecQN.QZ009'03.QC.DS;DTSSG.T!ME.DTnplo'SCtﬂﬁtﬂsoQGONzo
4VUD(6017)|KT;KKT.NKT.NI'NJ’NM'NN|SUX(55|36)'SUY(65.36"T'
SHS(65436) +KOR ¢ KHS s KCC s HMSL s HOR 4 HHS s HOC »
6V‘s‘6.l7’CGDRlQHSlQOC’V'x‘6'17"V'Y(&'I?’C

7NB!(40)oN82(40)-N83(40)-NB4(¢O)-NBS(4OI.NBG(QO).NB7(40);NBB(#OI.

ANB9(40),N310(40)

SUBROUTINE HCHDRY CCMPUTES HelUs AND ¥V AT THE GRID POINTS ON
BOUNDARY,
OATA NNB 1+ NNB2 s ANBI3 ) NANBAJNNBS/13,:39420431.7/
DATA NNUOE s NNB7 s NNBB s NNBI, NNB10/8,9:7+ 31,27/
DO 21 K=1,NNB1
N=NBl (K}
I=18(N)
J=JBIN)
31 HOTJ)=H{I+1.J+1) 4 H{I+1s4J=-1) = H(I+2+J)
D0 33 K=1.NNB2
N=NB2{(K)
I=18(N}
J=JBIN)
33 HOIsJ)=H{I#+14d=1) ¢ H{I=14J=1) = H{LsJd~2)
DO 35 K=1s,NNBS3
N=NBHI(K)
I=1{8{N)}
J=JBIN)
35 HUILsJ)=H{I=14+J+1) + H{I-14J=-1) = H{(I=-2.,4)
DO 37 K=1.NNB4
N=NB4(K)
I=IB(N)
J=JBIN)
A7 HL{Tsd} = HOL+14J041) + HMH{E=1sJ%1) = H(I,J42)
DO 39 K=1 ,NNO35%
N=NB5S{K)
I=18(n)
J=JHiN)
39 HMOILsJ)=H(I+1s0~1)}%2,0 = H{I+2,J=2)
DG 41 K=1sNNKB6
N=KNB&6( K}
I=IB{N)}
J=JBIN)
41 HOT v JI=H{l-14J-1)%Z24.0 ~H{I=-2,3-2)
DU 43 K=1.NNBT7
N=NBT7{K}
I=18(N)
J=J8{n)
43 HOTsJ)=H{I=14J%1)%2,0 — H{t=2,04+2)
DO 45 K=1 ,NNBB
N=NBB(K)
[=IB{N)
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J=JHEN)
HOLs JI=H{I+#1,04¢1)%2,0 - H{I#2,042)

DD 47 K=1,NNBY

N=RBI(K)

I=IB(N)

J=JH(N}

HET o J)=(H(T s J+1) 4 H{I+J=1))72.0
B0 49 K=1,NNB10O

N=NBLOIK)

I=1B¢(N)

J=JB{N)

HET»J)=S(HUI#L4d) + H(l=1,4})/2.

ihuhbiubdub b b g L A
COMPUTATION OF U AND V AT THE GAPS AND QTHER BOUNDARY POINTS.
HAK K AAK AR R AR R R oo R 0 R o A R o ok ok o oo R o o o o

102

106

110

220

NEUSE RIVER JUNCTION wITH SCUND

N=192

I=IBI(N)

J=JB(N}
U{led)=U(l+},0)
VIiIeJ)=0.

DG 102 N=1,4
I=18(N)

J=JBI{NY
UCT+d 3=t I+1,.J)
VilsJ)=0.

PAMLICO RIVER JUNCTION WITH SCUND

00 106 N=20.24
I=TB(N)

J=JBIN)

U lsJd)=0,
Vilsdd=viI,J=1)

CROATAN AND RCANQOKE SCUNDS

DC 110 N=£88.,95
I=1IB{N}

J=JACN)
UCTLsd)=U(I=1,4=-1)
VIT+)=Uul{I,J}

DC 220 N=92,96
{=18(N)

J=JBEIN)

UCT s 31 =0,
V(iad)=0,

23
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119
190

191

192
194

195

198
200

201

202
203

205

206
211

212

214
215

21 HCHDRY CATE = 76246

OREGON INLET BETWEEN PAMLICO SOUND AND ATLANTIC OCEAN.

HOR={H(ST 21 )} +H(57+422)+H{ST¢23))/3,
IF (ADS(HOR) = 0el) 192,192,119
IF {HOR - 0.0} 150,191,191
QOR==KORXSQRT(HMSL=-HOR)

GC Ta 194

GOR=KOR*SQRT{ HCR=MMSL )

GO TO 194

GOR = 0.0

DO 195 N=104.106

I=IBIN)

J=JBIN)

UL LsJ)=CACR)I/Z(2,0%DS#{D(1,J)))
Vilsd)=0,.

HATTERAS INLET BETWEEN PAMLICC SQUND AND ATLANTIC OCEAN

HHS={H({31 :9}+H{32:9)+H(32,:,9))/3.
IF (ABS(HHS) ~ 041) 2024+4202,198
IF(HHS«0.0) 200+201,201
QHS==KHS*SQRT(HMSL~-HHS)

GO TO 203

QHS=KHS®SQRT{ HHS—-HMSL)

GD TO 203

GHS=040

DO 205 N=150.152

I=IB{N}

J=JBIN)
VIiIsd)==(QHSI/{2.,0%D5%(DC(1,J4)})
Ul1.J)=0,

CCRACOKE INLET BETWEEN PAMLICOC SGUND AND ATLANTIC OCEAN

HOC={H(19,11)+H(20+11)#H{21413))73,
IF (AGS(HOC) - 0.1} 214:214+206
IF (HOC = 0.0} Zl11.212,212
QUC==KOCE*SART(HMSL =HQC)

GC TO 215

GQCC=KOC*SORT(HOC—-HMSL )

GO TO 215

COC=0.0

DC 216 N=16&4,166

I=I8(N}

J=JBIN)
VIT+J)}==(QOCI /7 (2.0%C5%x{DLI4J) )}
UCT+d)=0,.

RETURN

END

QA

16747737

N




NIV G LEVEL 21 MA TN DATE = 76246 16747737

C

C

OO0 nN

Y Y I T LT T P
SUBROUTINE uvcClc2
R K kR R
COMMON U(65|35).V(65936’!H(65o36"U0(65|36’OV0(65i36’0H0‘65036’i
lD(65.36).la(195).JB(IQS).JU(&S),JL(65)'IG(lOO)oJG(100),
2 G.DTDS.DTGO.Hx.wY.NXDT.!YDT.CMSO.GDT'GTS.CORDT,TPRINT-
3[-J.M-N.Ql-QN;GZ.OP.OJ'QC.DS-DTSSO.TIME.DT.PI.uSC-OQ.Qs.QG-NZ.
4V'D(6017"KT!KKTINKT.NIlNJ.NM.NN!S‘x‘65036)'S'Y(ﬁsisé’Cr'
5H5(65’36)lKOR'KHS.KGC.HNSLoHOQ'HHSuHUCo
6V“5i6.17)iQUR.QHS.QDCoVHK(ﬁl]7’.Vﬂv(6tl7)o
7NB!(40);N32(¢0’.NB3(‘0).N84‘40).N85(4030N86(40)'NB7‘40)0N88(‘0’0
BNBI(40Q) 4NB10(40)

SUBROUTINE UVCIC2 PRINTS THE VALUES OF U AND v AT ALL POINTS
IN A GIVEN TIME STEP.

WRITE (3,310) TIME,DT

WRITE(3.100)
100 FORMAT(/10X.*VALUES OF THE X=-COMPONENT OF VELGCITY.U AT ALL POINTS

1*/)

WRITE (34160} (Jed=5,19)

DO 110 1=5,61
110 WRITE(3,180) IeUlTed)+d=5,19)

WRITE (3+165) (Ja.J=20,35)

DO 120 I=5,61
120 WRITE (3.185) Iy (ULL+J)sd=20,435)

WRITE (3,310) TIME,DT

WRITE{3,130) )
130 FORMAT{/10X+"VALUES OF THE Y=COMPCAENT OF VELOCITY.V AT ALL POINTS

1/

WRITE (3+160) (J5J0=5,1%)

DO 1490 I=5.61
140 WRITE(3,180) [+(V{Lled)sd=5,19)

WRITE (3.165) (Jesd=20,35)

DO 159 I=5.:61
150 WRITE (3,185) LolV{Ls3)30=20,35)
160 FORMAT (/77X 1S(3Xs"(3,024%)2)/)
165 FORMATL//77X416(3Xs (", 12,%)%)/)
180 FORMAT (3X+* (" 312,%)" ,15(1XsF6.2))
iI1BS FORMAT (33Xt {"312,%),16{(1XsFE2))
310 FORMATI("1Y,/" % TIME=® sFB8.2+2X e+ *MINUTESe THE TIME INCREMENT USED I

1S5s DT=24F8,242X4*SECANDS?)

RETURN

END
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